512 research outputs found

    Spin-dependent Scattering by a Potential Barrier on a Nanotube

    Full text link
    The electron spin effects on the surface of a nanotube have been considered through the spin-orbit interaction (SOI), arising from the electron confinement on the surface of the nanotube. This is of the same nature as the Rashba-Bychkov SOI at a semiconductor heterojunction. We estimate the effect of disorder within a potential barrier on the transmission probability. Using a continuum model, we obtained analytic expressions for the spin-split energy bands for electrons on the surface of nanotubes in the presence of SOI. First we calculate analytically the scattering amplitudes from a potential barrier located around the axis of the nanotube into spin-dependent states. The effect of disorder on the scattering process is included phenomenologically and induces a reduction in the transition probability. We analyzed the relative role of SOI and disorder on the transmission probability which depends on the angular and linear momentum of the incoming particle, and its spin orientation. We demonstrated that in the presence of disorder perfect transmission may not be achieved for finite barrier heights.Comment: 16 pages, 15 figure

    The Effect of a Magnetic Field on the Acoustoelectric current in a Narrow Channel

    Full text link
    The effect of a perpendicular magnetic field on the quantized current induced by a surface acoustic wave in a quasi-1D channel is studied. The channel has been produced experimentally in a GaAs heterostructure by shallow etching techniques and by the application of a negative gate voltage to Schottky split gates. Commensurability oscillations of the quantized current in this constriction have been observed in the interval of current between quantized plateaus. The results can be understood in terms of a moving quantum dot with the electron in the dot tunneling into the adjacent two-dimensional region. The goal is to explain qualitatively the mechanism for the steplike nature of the acoustoelectric current as a function of gate voltage and the oscillations when a magnetic field is applied. A transfer Hamiltonian formalism is employed.Comment: 5 pages, 2 figure

    Quantum-Electron Back Action on Hybridization of Radiative and Evanescent Field Modes

    Get PDF
    A back action from Dirac electrons in graphene on the hybridization of radiative and evanescent fields is found as an analogy to Newton's third law. Here, the back action appears as a localized polarization field which greatly modifies an incident surface-plasmon-polariton (SPP) field. This yields a high sensitivity to local dielectric environments and provides a scrutiny tool for molecules or proteins selectively bounded with carbons. A scattering matrix is shown with varied frequencies nearby the surface-plasmon (SP) resonance for the increase, decrease and even a full suppression of the polarization field, which enables accurate effective-medium theories to be constructed for Maxwell-equation finite-difference time-domain methods. Moreover, double peaks in the absorption spectra for hybrid SP and graphene-plasmon modes are significant only with a large conductor plasma frequency, but are overshadowed by a round SPP peak at a small plasma frequency as the graphene is placed close to conductor surface. These resonant absorptions facilitate the polariton-only excitations, leading to polariton condensation for a threshold-free laser.Comment: 14 pages and 6 figure

    Unimpeded tunneling in graphene nanoribbons

    Full text link
    We studied the Klein paradox in zigzag (ZNR) and anti-zigzag (AZNR) graphene nanoribbons. Due to the fact that ZNR (the number of lattice sites across the nanoribbon (N is even) and AZNR (N is odd) configurations are indistinguishable when treated by the Dirac equation, we supplemented the model with a pseudo-parity operator whose eigenvalues correctly depend on the sublattice wavefunctions for the number of carbon atoms across the ribbon, in agreement with the tight-binding model. We have shown that the Klein tunneling in zigzag nanoribbons is related to conservation of the pseudo-parity rather than pseudo-spin in infinite graphene. The perfect transmission in the case of head-on incidence is replaced by perfect transmission at the center of the ribbon and the chirality is interpreted as the projection of the pseudo-parity on momentum at different corners of the Brillouin zone

    Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots

    Full text link
    The resonant scattering of surface plasmon-polariton waves by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the scattering field spectrum is predicted and accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of surface plasmon-polariton waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattering field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of surface plasmon-polariton waves due to interband photon-dressing effect. Our result on the scattering of surface plasmon-polariton waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.Comment: 15 pages, 3 figure

    Controlling quantum-dot light absorption and emission by a surface-plasmon field

    Full text link
    The possibility for controlling the probe-field optical gain and absorption switching and photon conversion by a surface-plasmon-polariton near field is explored for a quantum dot above the surface of a metal. In contrast to the linear response in the weak-coupling regime, the calculated spectra show an induced optical gain and a triply-split spontaneous emission peak resulting from the interference between the surface-plasmon field and the probe or self-emitted light field in such a strongly-coupled nonlinear system. Our result on the control of the mediated photon-photon interaction, very similar to the `gate' control in an optical transistor, may be experimentally observable and applied to ultra-fast intrachip/interchip optical interconnects, improvement in the performance of fiber-optic communication networks and developments of optical digital computers and quantum communications.Comment: 7 pages, 15 figure

    Dipole-dipole interaction between a quantum dot and graphene nanodisk

    Get PDF
    We study theoretically the dipole-dipole interaction and energy transfer in a hybrid system consisting of a quantum dot and graphene nanodisk embedded in a nonlinear photonic crystal. In our model a probe laser field is applied to measure the energy transfer between the quantum dot and graphene nanodisk while a control field manipulates the energy transfer process. These fields create excitons in the quantum dot and surface plasmon polaritons in the graphene nanodisk which interact via the dipole-dipole interaction. Here the nonlinear photonic crystal acts as a tunable photonic reservoir for the quantum dot, and is used to control the energy transfer. We have found that the spectrum of power absorption in the quantum dot has two peaks due to the creation of two dressed excitons in the presence of the dipole-dipole interaction. The energy transfer rate spectrum of the graphene nanodisk also has two peaks due to the absorption of these two dressed excitons. Additionally, energy transfer between the quantum dot and the graphene nanodisk can be switched on and off by applying a pump laser to the photonic crystal or by adjusting the strength of the dipole-dipole interaction. We show that the intensity and frequencies of the peaks in the energy transfer rate spectra can be modified by changing the number of graphene monolayers in the nanodisk or the separation between the quantum dot and graphene. Our results agree with existing experiments on a qualitative basis. The principle of our system can be employed to fabricate nano-biosensors, optical nano-switches, and energy transfer devices
    corecore