16 research outputs found

    Recovering long-term aerosol optical depth series (1976–2012) from an astronomical potassium-based resonance scattering spectrometer

    Get PDF
    A 37-year long-term series of monochromatic aerosol optical depth (AOD) has been recovered from solar irradiance measurements performed with the solar spectrometer Mark-I, deployed at Izaña mountain since 1976. The instrument operation is based on the method of resonant scattering, which affords wavelength absolute reference and stability (long-term stability and high precision) in comparison to other instruments based purely on interference filters. However, it has been specifically designed as a reference instrument for helioseismology, and its ability to determine AOD from transmitted and scattered monochromatic radiation at 769.9 nm inside a potassium vapour cell in the presence of a permanent magnetic field is evaluated in this paper. Particularly, the use of an exposed mirror arrangement to collect sunlight as well as the Sun–laboratory velocity dependence of the scattered component introduces some important inconveniences to overcome when we perform the instrument's calibration. We have solved this problem using a quasi-continuous Langley calibration technique and a refinement procedure to correct for calibration errors as well as for the fictitious diurnal cycle on AOD data. Our results showed similar calibration errors retrieved by means of this quasi-continuous Langley technique applied in different aerosol load events (from 0.04 to 0.3), provided aerosol concentration remains constant throughout the calibration interval.The AERONET sun photometers at Izaña have been calibrated within AERONET-Europe TNA supported by the European Community-Research Infrastructure Action under the FP7 “Capacities” specific programme for Integrating Activities, ACTRIS grant agreement no. 262254. The GAW-PFR network for AOD at WMO-GAW global observatories has been implemented by the World Optical Depth Research and Calibration Center (WORCC). Mark-I operation was supported by the Spanish National Plan of Research and Development under grant no. AYA2012–17803

    Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign

    Get PDF
    The first multi-instrument nocturnal aerosol optical depth (AOD) intercom-parison campaign was held at the high-mountain Iza ̃na Observatory (Tener-ife, Spain) in June 2017, involving 2-minutes synchronous measurements fromtwo different types of lunar photometers (Cimel CE318-T and Moon Preci-sion Filter Radiometer, LunarPFR) and one stellar photometer. The Robotic Lunar Observatory (ROLO) model developed by the U.S. Geological Survey(USGS) was compared with the open-access ROLO Implementation for Moonphotometry Observation (RIMO) model. Results showed rather small differ-ences at Iza ̃na over a 2-month time period covering June and July, 2017(±0.01 in terms of AOD calculated by means of a day/night/day coherencetest analysis and±2 % in terms of lunar irradiance). The RIMO model hasbeen used in this field campaign to retrieve AOD from lunar photometricmeasurements. No evidence of significant differences with the Moon’s phase angle wasfound when comparing raw signals of the six Cimel photometers involved inthis field campaign.The raw signal comparison of the participating lunar photometers (Cimeland LunarPFR) performed at coincident wavelengths showed consistent mea-surements and AOD differences within their combined uncertainties at 870 nmand 675 nm. Slightly larger AOD deviations were observed at 500 nm, point-ing to some unexpected instrumental variations during the measurement pe-riod.Lunar irradiances retrieved using RIMO for phase angles varying between0◦and 75◦(full Moon to near quarter Moon) were compared to the irradi-ance variations retrieved by Cimel and LunarPFR photometers. Our resultsshowed a relative agreement within±3.5 % between the RIMO model andthe photometer-based lunar irradiances.The AOD retrieved by performing a Langley-plot calibration each nightshowed a remarkable agreement (better than 0.01) between the lunar pho-tometers. However, when applying the Lunar-Langley calibration using RIMO,AOD differences of up to 0.015 (0.040 for 500 nm) were found, with differ-ences increasing with the Moon’s phase angle. These differences are thoughtto be partly due to the uncertainties in the irradiance models, as well asinstrumental deficiencies yet to be fully understood.High AOD variability in stellar measurements was detected during thecampaign. Nevertheless, the observed AOD differences in the Cimel/stellarcomparison were within the expected combined uncertainties of these twophotometric techniques. Our results indicate that lunar photometry is amore reliable technique, especially for low aerosol loading conditions.The uncertainty analysis performed in this paper shows that the com-bined standard AOD uncertainty in lunar photometry is dependent on thecalibration technique (up to 0.014 for Langley-plot with illumination-basedcorrection, 0.012-0.022 for Lunar-Langley calibration, and up to 0.1 for the 2 Sun-Moon Gain Factor method). This analysis also corroborates that theuncertainty of the lunar irradiance model used for AOD calculation is withinthe 5-10 % expected range.This campaign has allowed us to quantify the important technical diffi-culties that still exist when routinely monitoring aerosol optical propertiesat night-time. The small AOD differences observed between the three typesof photometers involved in the campaign are only detectable under pristinesky conditions such as those found in this field campaign. Longer campaignsare necessary to understand the observed discrepancies between instrumentsas well as to provide more conclusive results about the uncertainty involvedin the lunar irradiance model

    Izaña Atmospheric Research Center. Activity Report 2019-2020

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines

    Izaña Atmospheric Research Center. Activity Report 2015-2016

    Get PDF
    This report is a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H<sub>2</sub>O-<i>δ</i>D in situ measurements

    Get PDF
    We present two years of in situ measurements of water vapour (H[subscript 2]O) and its isotopologue ratio (δD, the standardized ratio between H[subscript 2][superscript 16]O and HD[superscript 16]O), made at two remote mountain sites on Tenerife in the subtropical North Atlantic. We show that the data – if measured during night-time – are well representative for the lower/middle free troposphere. We use the measured H[subscript 2]O-δD pairs, together with dust measurements and back trajectory modelling for analysing the moisture pathways to this region. We can identify four principally different transport pathways. The air mass transport from high altitudes and high latitudes shows two different scenarios. The first scenario brings dry air masses to the stations, as the result of condensation events occurring at low temperatures. The second scenario brings humid air masses to the stations, due to cross-isentropic mixing with lower-level and more humid air during transport since last condensation (LC). The third pathway is transportation from lower latitudes and lower altitudes, whereby we can identify rain re-evaporation as an occasional source of moisture. The fourth pathway is linked to the African continent, where during summer, dry convection processes over the Sahara very effectively inject humidity from the boundary layer to higher altitudes. This so-called Saharan Air Layer (SAL) is then advected westward over the Atlantic and contributes to moisten the free troposphere. We demonstrate that the different pathways leave distinct fingerprints on the measured H[subscript 2]O-δD pairs.European Commission. Framework Programme for Research and Innovation (FP7/2007-2013/ERC Grant agreement number 256961)Spain. Ministry of Economy and Competitiveness (project POLLINDUST (CGL2011-26259))European Research Infrastructure for the observation of Aerosol, Clouds, and Trace gases (grant agreement number 262254)Spain. Ministry of Economy and Competitiveness (NOVIA project, CGL2012-37505

    Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

    No full text
    This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, <i>R</i>, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  &gt;  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis
    corecore