128 research outputs found

    Pollution atmosphérique et développement urbain en Chine

    Get PDF
    Les villes chinoises, comme la plupart des villes des pays en voie de dĂ©veloppement doivent relever le dĂ©fi d’une urbanisation rapide conjuguĂ©e Ă  des besoins accrus en Ă©nergie, tout en essayant de maĂźtriser leurs rejets polluants. Ce souci d’un meilleur environnement est particuliĂšrement appuyĂ© pour la qualitĂ© de l’air. Le coĂ»t Ă©conomique de la pollution atmosphĂ©rique a favorisĂ© l'Ă©mergence au niveau national d'une rĂ©elle politique de surveillance et de contrĂŽle, et la recherche tout comme l'industrie sont dĂ©sormais en mesure de proposer des rĂ©ponses technologiques adaptĂ©es Ă  ces dĂ©fis de grande ampleur. Aussi, Ă  l'instar de PĂ©kin, les principales « villes-vitrines » chinoises ontelles amĂ©liorĂ© leur capacitĂ© Ă  lutter contre la pollution, mais la situation est encore mitigĂ©e, voire parfois catastrophique, pour les villes plus petites

    Atmospheric Pollution and Urban Development in China

    Get PDF
    Chinese cities face the challenge of battling air pollution during a time of rapid urbanisation and rising energy demand. Poor air quality is heightening anxiety over the environment. Given pollution’s economic cost, a real policy of monitoring and control has emerged at the national level. Chinese researchers and industry have come up with technological responses to the enormous challenges. While some showcase cities have boosted their pollution-control measures, the situation in smaller ones remains largely catastrophic

    Evaluation multicritÚre des technologies de stockage couplées aux énergies renouvelables (conception et réalisation de la plateforme de simulation ODYSSEY pour l'optimisation du dimensionnement et de la gestion énergétique)

    Get PDF
    L'objectif de ces travaux de thÚse était de concevoir et de développer un outil de simulation et d'optimisation multicritÚres de centrales couplant des sources d'énergies renouvelables (EnR) et des moyens de stockage. L'optimisation porte sur le dimensionnement de l'installation (taille des unités de production EnR et de stockage) et sur la ou les stratégies de gestion de la centrale EnR-stockage selon des critÚres technico-économiques évalués par l'outil. L'originalité de l'outil développé réside dans la modularité de définition de l'architecture EnR-stockage, dans la prise en compte de plusieurs niveaux de modélisation (échelle et précision) des différents composants du systÚme et dans l'intégration du vieillissement. L'outil développé est également illustré sur des cas d'études afin d'apprécier sa pertinence.The objective of this work was to design and develop a simulation and multi-criteria optimization tool of energy systems composed of renewable energy (RE) production and storage units. Optimization concerns the systems sizing (renewable production and storage units) and the systems control strategies based on techno-economic criteria. Originality of the tool resides in the modularity of definition of the RE-storage plant architecture, in taking into account several levels of modeling (scale and accuracy) of the different system components and in the consideration of ageing through performances degradation. The developed tool is also illustrated on application cases to highlight its usefulness.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    gec estro acrop recommendations in skin brachytherapy

    Get PDF
    Abstract Purpose The aim of this publication is to compile available literature data and expert experience regarding skin brachytherapy (BT) in order to produce general recommendations on behalf of the GEC-ESTRO Group. Methods We have done an exhaustive review of published articles to look for general recommendations. Results Randomized controlled trials, systemic reviews and meta-analysis are lacking in literature and there is wide variety of prescription techniques successfully used across the radiotherapy centers. BT can be delivered as superficial application (also called contact BT or plesiotherapy) or as interstitial for tumours thicker than 5 mm within any surface, including very irregular. In selected cases, particularly in tumours located within curved surfaces, BT can be advantageous modality from dosimetric and planning point of view when compared to external beam radiotherapy. The general rule in skin BT is that the smaller the target volume, the highest dose per fraction and the shortest overall length of treatment can be used. Conclusion Skin cancer incidence is rising worldwide. BT offers an effective non-invasive or minimally invasive and relative short treatment that particularly appeals to elder and frail population

    Assessment of In vitro Sun Protection Factor of Calendula Officinalis L. (Asteraceae) Essential Oil Formulation

    Get PDF
    The present study was undertaken to study the sunscreen activity of herbal formulation. There is no evidence of the sun protection factor (SPF) studies on essential oil of Calendula flowers (Calendula officinalis L., Asteraceae). The study investigates the in vitro SPF by ultraviolet specrtophotometry method of Calendula flower oil in a cream formulation. Calendula oil was isolated by Clavenger's apparatus, compositions were identified by GC–MS and the cream of calendula flower oil was prepared by homogenization method followed by evaluation for physical parameters. The sun protection factor of cream was evaluated by in vitro method employing UV–visible spectrophotometer (Shimazdu-1600). The SPF of Calendula oil in cream formulation exhibited good activity (SPF = 14.84 ± 0.16). Finding of this study suggested that calendula oil cream can be used to protect the skin from UV radiations in form of sunscreen cream and to maintain the natural pigmentation of the skin

    Biogeochemical Impacts of a Black Carbon Wet Deposition Event in Halong Bay, Vietnam

    Get PDF
    Black carbon (BC) is emitted to the atmosphere during biomass, biofuel, and fossil fuel combustion, and leaves the atmosphere via dry or wet deposition on land and on the ocean. On a global scale, wet deposition accounts for about 80% of the total atmospheric BC inputs to the ocean. The input of BC particles to the ocean can enrich surface waters with carbon and associated elements, and owing to high porosity and surface-active properties, BC can alter biogeochemical cycles by sorbing dissolved compounds and promoting aggregation. The rain-mediated input of BC to the ocean and its consequences on nutrient concentrations and particle dynamics were studied in Halong Bay, Vietnam, during a 24-h cycle impacted by short and heavy rainfall events. This study suggests that once introduced in the surface ocean via wet deposition, BC sorbs dissolved organic matter (DOM) and stimulates aggregation processes. The observed wet deposition events were characterized by sudden and pulsed inputs of BC particles that created a thin layer of sinking surface-active aggregates, acting as a net-like scavenger for DOM, nutrients (especially phosphate), and small particles. In addition, the wet deposition events coincided with an enrichment of nutrients in the surface microlayer, with an excess input of nitrogen relative to phosphorus leading to an increase of the molar N:P ratio from 24:1 to 37:1. In the underlying water, the molar N:P ratio also increased (i.e., from 39:1 to 64:1), and this can be attributed to the preferential scavenging of dissolved P-compounds on sinking BC-aggregates

    Particle and VOC emission factor measurements for anthropogenic sources in West Africa

    Get PDF
    A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 ("Air Pollution and Health") of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) FP7 program. Emission sources considered here include wood (hevea and iroko) and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM), elemental carbon (EC), primary organic carbon (OC) and volatile organic compounds (VOCs) have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea), and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10). Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg-1 of fuel burned (g kg-1), 11.05 ± 4.55 and 41.12 ± 24.62 g kg-1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg-1 fuel for EC, 65.11 g kg-1 fuel for OC and 496 g kg-1 fuel for TPM). The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg-1 fuel). EC is primarily emitted in the ultrafine fraction, with 77 % of the total mass being emitted as particles smaller than 0.25 Όm. The particles and VOC emission factors obtained in this study are generally higher than those in the literature whose values are discussed in this paper. This study underlines the important role of in situ measurements in deriving realistic and representative emission factors

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure
    • 

    corecore