138 research outputs found

    Handling and Transport of Oversized Accelerator Components and Physics Detectors

    Get PDF
    For cost, planning and organisational reasons, it is often decided to install large pre-built accelerators components and physics detectors. As a result surface exceptional transports are required from the construction to the installation sites. Such heavy transports have been numerous during the LHC installation phase. This paper will describe the different types of transport techniques used to fit the particularities of accelerators and detectors components (weight, height, acceleration, planarity) as well as the measurement techniques for monitoring and the logistical aspects (organisation with the police, obstacles on the roads, etc). As far as oversized equipment is concerned, the lowering into the pit is challenging, as well as the transport in tunnel galleries in a very scare space and without handling means attached to the structure like overhead travelling cranes. From the PS accelerator to the LHC, handling systems have been developed at CERN to fit with these particular working conditions. This paper will expose the operating conditions of the main transport equipments used at CERN in PS, SPS and LHC tunnels

    Study of supports for the final doublets of ATF2

    Get PDF
    We investigated supports for the final doublets of ATF2 with vertical relative motion to the floor of final doublets below 10nm. Our calculations of relative motion were done by using data of ATF ground motion. We studied the vibratory behaviour of a steel lightweight honeycomb table as a base for fixing magnets. First, the table was fixed to the floor by four steel feet at its corners. Its first vertical resonance was at 41Hz, which induces a non negligible relative motion (5.7nm) compared to ATF2 tolerances. Modal shape measurements show that the six first resonances of the table (below 150Hz) are rigid body modes in the six degrees of freedom. The conclusion of these measurements is that the table is very rigid and well adapted for ATF2 project but the rigidity of the four steel feet is not sufficient compared to the rigidity of the table. Consequently, the table was fixed to the floor on one entire face to break these six rigid body modes by three large steel plates. The first vertical resonance was then at higher frequencies (92Hz), which show that good boundary conditions were chosen for the table. The relative motion was then low (3.5nm above 0.1Hz) compared to ATF2 tolerances. To finish, we studied the vibratory behaviour of one ATF2 FD sextupole and one ATF2 FD quadrupole with their intermediary supports made at LAPP and used to fix these magnets to the honeycomb table. The measurements showed that the final doublets with their intermediary supports were well designed because the first resonance of sextupoles and quadrupoles was at high frequency (above 100 Hz and at 76Hz respectively), which induced a small relative motion of final doublets to the floor compared to ATF2 tolerances

    Study of the Stabilization to the Nanometer Level of Mechanical Vibrations of the CLIC Main Beam

    Get PDF
    Original publication available at http://www.jacow.org/International audienceTo reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the "nanostabilization" of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometre sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometre movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometre stabilization

    Design, construction, and beam tests of a rotatable collimator prototype for high-intensity and high-energy hadron accelerators

    Get PDF
    A rotatable-jaw collimator design was conceived as a solution to recover from catastrophic beam impacts which would damage a collimator at the Large Hadron Collider (LHC) or its High-Luminosity upgrade (HL-LHC). One such rotatable collimator prototype was designed and built at SLAC and delivered to CERN for tests with LHC-type circulating beams in the Super Proton Synchrotron (SPS). This was followed by destructive tests at the dedicated High Radiation to Materials (HiRadMat) facility to validate the design and rotation functionality. An overview of the collimator design, together with results from tests without and with beam are presented
    corecore