1,012 research outputs found

    It Seemed a Lucky Thing: The Self as Art in the Work of Sylvia Plath

    Get PDF
    “It Seemed a Lucky Thing” centers a discussion of author and self around the works of Sylvia Plath, primarily using her novel The Bell Jar and two of her Ariel works, “Lady Lazarus” and “Daddy”. Blending together various ideas of self-construction, ranging from Kierkegaard’s aesthetics to Foucault’s “What is an Author?” to issues of psychiatry as a method of social control, the work defines its principle term “self-authorship” as the purposeful construction of self-image inherent in both decisions within a lived life and in the process of creating written art. Self-authorship and its complications are addressed both in context of Esther Greenwood, the main character of The Bell Jar, and in context of Sylvia Plath herself. Her poetry is intensely analyzed, revealing difficult and at times confounding questions. What is “honest experience”? How far can we fabricate our experience? What lies within the satire and irony of The Bell Jar’s multi-layered narrative? Why and how does Plath force the reader to see both fiction and non-fiction, to question intention and meaning, and create friction in separating and combining the two? What does this reveal about the nature of a poem and of a novel? While ultimately much of what is revealed with self-authorship and Plath is somewhat paradoxical and practically unanswerable, the work, at the very least, addresses interesting questions around the nature of creation, both of art and of self

    The Best Brown Dwarf Yet?: A Companion to the Hyades Eclipsing Binary V471 Tau

    Get PDF
    We have carried out an analysis of about 160 eclipse timings spanning over 30 years of the Hyades eclipsing binary V471 Tauri that shows a long-term quasi-sinusoidal modulation of its observed eclipse arrival times. The O-Cs have been analyzed for the ``light-time'' effect that arises from the gravitational influence of a tertiary companion. The presence of a third body causes the relative distance of the eclipsing pair to the Earth to change as it orbits the barycenter of the triple system. The result of the analysis of the eclipse times yields a light-time semi-amplitude of 137.2+/-12.0 s, an orbital period of P_3 = 30.5+/-1.6 yr and an eccentricity of e_3 = 0.31+/-0.04. The mass of the tertiary component is M_3 sin i_3 = 0.0393+/-0.0038 Mo when a total mass of 1.61+/-0.06 Mo for V471 Tau is adopted. For orbital inclinations i_3 > 35 deg, the mass of the third body would be below the stable hydrogen burning limit of M = 0.07 Mo and it thus would be a brown dwarf. In the next several years (near maximum elongation), it should be feasible to obtain IR images and spectra of V471 Tau C that, when combined with the known mass, age, distance, and [Fe/H], will serve as a benchmark for understanding the physical properties and evolution of brown dwarfs.Comment: 9 pages, 3 figures, accepted for publication in ApJ Letter

    Visible-band and IUE observations of mu Sagittarii

    Get PDF
    H alpha and U band photometry and IUE spectra of the binary system mu Sagittarii are discussed. An estimate of mass-loss is made from the observed P Cygni profiles. There are indications of pulsation in the supergiant B8 component

    The Rose and the Violet

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6144/thumbnail.jp

    Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations

    Get PDF
    According to coherent reflection theory (CRT), stimulus frequency otoacoustic emissions (SFOAEs) arise from cochlear irregularities coherently reflecting energy from basilar membrane motion within the traveling-wave peak. This reflected energy arrives in the ear canal predominantly with a single delay at each frequency. However, data from humans and animals indicate that (1) SFOAEs can have multiple delay components, (2) low-frequency SFOAE delays are too short to be accounted for by CRT, and (3) “SFOAEs” obtained with a 2nd (“suppressor”) tone ≥2 octaves above the probe tone have been interpreted as arising from the area basal to the region of cochlear amplification. To explore these issues, we collected SFOAEs by the suppression method in guinea pigs and time-frequency analyzed these data, simulated SFOAEs, and published chinchilla SFOAEs. Time-frequency analysis revealed that most frequencies showed only one SFOAE delay component while other frequencies had multiple components including some with short delays. We found no systematic patterns in the occurrence of multiple delay components. Using a cochlear model that had significant basilar membrane motion only in the peak region of the traveling wave, simulated SFOAEs had single and multiple delay components similar to the animal SFOAEs. This result indicates that multiple components (including ones with short delays) can originate from cochlear mechanical irregularities in the SFOAE peak region and are not necessarily indicative of SFOAE sources in regions ≥2 octaves basal of the SFOAE peak region. We conclude that SFOAEs obtained with suppressors close to the probe frequency provide information primarily about the mechanical response in the region that receives amplification, and we attribute the too-short SFOAE delays at low frequencies to distortion-source SFOAEs and coherent reflection from multiple cochlear motions. Our findings suggest that CRT needs revision to include reflections from multiple motions in the cochlear apex.United States. National Institute for Deafness and other Communicative Disorders (RO1 DC000235)United States. National Institute for Deafness and other Communicative Disorders (R01 DC003687)United States. National Institute for Deafness and other Communicative Disorders (T32 DC00038)United States. National Institute for Deafness and other Communicative Disorders (P30 DC005209)National Science Foundation (U.S.) (NSF Graduate Research Fellowship Program

    Determining Habitability: Which exoEarths should we search for life?

    Get PDF
    Within the next few years, the first Earth-mass planets will be discovered around other stars. Some of those worlds will certainly lie within the classical "habitable zone" of their parent stars, and we will quickly move from knowing of no exoEarths to knowing many. For the first time, we will be in a position to carry out a detailed search for the first evidence of life beyond our Solar System. However, such observations will be hugely taxing and time consuming to perform, and it is almost certain that far more potentially habitable worlds will be known than it is possible to study. It is therefore important to catalogue and consider the various effects which make a promising planet more or less suitable for the development of life. In this work, we review the various planetary, dynamical and stellar influences that could influence the habitability of exoEarths. The various influences must be taken in concert when we attempt to decide where to focus our first detailed search for life. While there is no guarantee that any given planet will be inhabited, it is vitally important to ensure that we focus our time and effort on those planets most likely to yield a positive result.Comment: 32 pages, 2 figures, 1 table; Accepted to appear in the International Journal of Astrobiolog
    • …
    corecore