202 research outputs found
Endoplasmic reticulum-mitochondria crosstalk and beta-cell destruction in type 1 diabetes
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.Therapeutic cell differentiatio
Absence of Self-Averaging and Universal Fluctuations in Random Systems Near Critical Points
The distributions P(X) of singular thermodynamic quantities, on an ensemble of d-dimensional quenched random samples of linear size L near a critical point, are analyzed using the renormalization group. For L much larger than the correlation length ξ, we recover strong self-averaging (SA): P(X) approaches a Gaussian with relative squared width RX~(L/ξ)−d. For L≪ξ we show weak SA (RX decays with a small power of L) or no SA [P(X) approaches a non-Gaussian, with universal L-independent relative cumulants], when the randomness is irrelevant or relevant, respectively
Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance
Host-parasite interactio
Early but not late exercise training in mice exacerbates hepatic inflammation in developing nonalcoholic fatty liver disease
Host-parasite interactio
The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver
LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver
Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking
Anomalous diffusion has been widely observed by single particle tracking
microscopy in complex systems such as biological cells. The resulting time
series are usually evaluated in terms of time averages. Often anomalous
diffusion is connected with non-ergodic behaviour. In such cases the time
averages remain random variables and hence irreproducible. Here we present a
detailed analysis of the time averaged mean squared displacement for systems
governed by anomalous diffusion, considering both unconfined and restricted
(corralled) motion. We discuss the behaviour of the time averaged mean squared
displacement for two prominent stochastic processes, namely, continuous time
random walks and fractional Brownian motion. We also study the distribution of
the time averaged mean squared displacement around its ensemble mean, and show
that this distribution preserves typical process characteristic even for short
time series. Recently, velocity correlation functions were suggested to
distinguish between these processes. We here present analytucal expressions for
the velocity correlation functions. Knowledge of the results presented here are
expected to be relevant for the correct interpretation of single particle
trajectory data in complex systems.Comment: 15 pages, 15 figures; References adde
Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis
No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphate–activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease. A novel small-molecule direct AMPK activator, PXL770, was used. Enzyme activity was measured with recombinant complexes. De novo lipogenesis (DNL) was quantitated in vivo and in mouse and human primary hepatocytes. Metabolic efficacy was assessed in ob/ob and high-fat diet–fed mice. Liver histology, biochemical measures, and immune cell profiling were assessed in diet-induced NASH mice. Direct effects on inflammation and fibrogenesis were assessed using primary mouse and human hepatic stellate cells, mouse adipose tissue explants, and human immune cells. PXL770 directly activated AMPK in vitro and reduced DNL in primary hepatocytes. In rodent models with metabolic syndrome, PXL770 improved glycemia, dyslipidemia, and insulin resistance. In mice with NASH, PXL770 reduced hepatic steatosis, ballooning, inflammation, and fibrogenesis. PXL770 exhibited direct inhibitory effects on pro-inflammatory cytokine production and activation of primary hepatic stellate cells. Conclusion: In rodent models, direct activation of AMPK is sufficient to produce improvements in all core components of NASH and to ameliorate related hyperglycemia, dyslipidemia, and systemic inflammation. Novel properties of direct AMPK activation were also unveiled: improved insulin resistance and direct suppression of inflammation and fibrogenesis. Given effects also documented in human cells (reduced DNL, suppression of inflammation and stellate cell activation), these studies support the potential for direct AMPK activation to effectively treat patients with NASH
Dendritic cell-intrinsic LKB1-AMPK/SIK signaling controls metabolic homeostasis by limiting the hepatic Th17 response during obesity
Obesity-associated metabolic inflammation drives the development of insulin resistance and type 2 diabetes, notably through modulating innate and adaptive immune cells in metabolic organs. The nutrient sensor liver kinase B1 (LKB1) has recently been shown to control cellular metabolism and T cell priming functions of DCs. Here, we report that hepatic DCs from high-fat diet-fed (HFD-fed) obese mice display increased LKB1 phosphorylation and that LKB1 deficiency in DCs (CD11c Delta LKB1) worsened HFD-driven hepatic steatosis and impaired glucose homeostasis. Loss of LKB1 in DCs was associated with increased expression of Th17-polarizing cytokines and accumulation of hepatic IL-17A+ Th cells in HFD-fed mice. Importantly, IL-17A neutralization rescued metabolic perturbations in HFD-fed CD11c Delta LKB1 mice. Mechanistically, deficiency of the canonical LKB1 target AMPK in HFD-fed CD11c Delta AMPK alpha 1 mice recapitulated neither the hepatic Th17 phenotype nor the disrupted metabolic homeostasis, suggesting the involvement of other and/ or additional LKB1 downstream effectors. We indeed provide evidence that the control of Th17 responses by DCs via LKB1 is actually dependent on both AMPK alpha 1 salt-inducible kinase signaling. Altogether, our data reveal a key role for LKB1 signaling in DCs in protection against obesityinduced metabolic dysfunctions by limiting hepatic Th17 responses.Host-parasite interactio
Nitric Oxide-Induced Activation of the AMP-Activated Protein Kinase α2 Subunit Attenuates IκB Kinase Activity and Inflammatory Responses in Endothelial Cells
BACKGROUND: In endothelial cells, activation of the AMP-activated protein kinase (AMPK) has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO). METHODOLOGY/PRINCIPAL FINDINGS: Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2(-/-) mice the interleukin (IL)-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2(-/-) mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK). Indeed, IKK (more specifically residues Ser177 and Ser181) was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2(+/+) versus AMPKα2(-/-) mice. CONCLUSIONS: These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK
A gene variant near ATM is significantly associated with metformin treatment response In type 2 diabetes: A replication and meta-analysis of five cohorts
_Aims/hypothesis:_ In this study we aimed to replicate the previously reported association between the glycaemic response to metformin and the SNP rs11212617 at a locus that includes the ataxia telangiectasia mutated (ATM) gene in multiple additional populations.
_Methods:_ Incident users of metformin selected from the Diabetes Care System West-Friesland (DCS, n=929) and the Rotterdam Study (n=182) from the Netherlands, and the CARDS Trial (n=254) from the UK were genotyped for rs11212617 and tested for an association with both HbA1c reduction and treatment success, defined as the ability to reach the treatment target of an HbA1c ≤7 % (53 mmol/mol). Finally, a meta-analysis including data from literature was performed.
_Results:_ In the DCS cohort, we observed an association between rs11212617 genotype and treatment success on metformin (OR 1.27, 95% CI 1.03, 1.58, p=0.028); in the smaller Rotterdam Study cohort, a numerically similar but non-significant trend was observed (OR 1.45, 95% CI 0.87, 2.39, p=0.15); while in the CARDS cohort there was no significant association. In meta-analyses of these three cohorts separately or combined with the previously published cohorts, rs11212617 genotype is associated with metformin treatment success (OR 1.24, 95% CI 1.04, 1.49, p=0.016 and OR 1.25, 95% CI 1.33, 1.38, p=7.8×10-6, respectively).
_ Conclusions/inte
- …