4,072 research outputs found

    The magnetic exchange parameters and anisotropy of the quasi-two dimensional antiferromagnet NiPS3_3

    Full text link
    Neutron inelastic scattering has been used to measure the magnetic excitations in powdered NiPS3_3, a quasi-two dimensional antiferromagnet with spin S=1S = 1 on a honeycomb lattice. The spectra show clear, dispersive magnons with a 7\sim 7 meV gap at the Brillouin zone center. The data were fitted using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb planes. Magnetic exchange interactions up to the third intraplanar nearest-neighbour were required. The fits show robustly that NiPS3_3 has an easy axis anisotropy with Δ=0.3\Delta = 0.3 meV and that the third nearest-neighbour has a strong antiferromagnetic exchange of J3=6.90J_3 = -6.90 meV. The data can be fitted reasonably well with either J1<0J_1 < 0 or J1>0J_1 > 0, however the best quantitative agreement with high-resolution data indicate that the nearest-neighbour interaction is ferromagnetic with J1=1.9J_1 = 1.9 meV and that the second nearest-neighbour exchange is small and antiferromagnetic with J2=0.1J_2 = -0.1 meV. The dispersion has a minimum in the Brillouin zone corner that is slightly larger than that at the Brillouin zone center, indicating that the magnetic structure of NiPS3_3 is close to being unstable.Comment: 21 pages, 7 figures, 33 reference

    Reasoning About a Service-oriented Programming Paradigm

    Full text link
    This paper is about a new way for programming distributed applications: the service-oriented one. It is a concept paper based upon our experience in developing a theory and a language for programming services. Both the theoretical formalization and the language interpreter showed us the evidence that a new programming paradigm exists. In this paper we illustrate the basic features it is characterized by

    Spectrum of a magnetized strong-leg quantum spin ladder

    Full text link
    Inelastic neutron scattering is used to measure the spin excitation spectrum of the Heisenberg S=1/2S=1/2 ladder material (C7_7H10_10N)2_2CuBr4_4 in its entirety, both in the gapped spin-liquid and the magnetic field induced Tomonaga-Luttinger spin liquid regimes. A fundamental change of the spin dynamics is observed between these two regimes. DMRG calculations quantitatively reproduce and help understand the observed commensurate and incommensurate excitations. The results validate long-standing quantum field theoretical predictions, but also test the limits of that approach

    Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2_2Ti2_2O7_7 in Magnetic Field

    Full text link
    The frustrated pyrochlore magnet Yb2_2Ti2_2O7_7 has the remarkable property that it orders magnetically, but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe in addition to dispersive magnons also a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low and high field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set we re-evaluate the spin Hamiltonian finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.Comment: 5 pages main text + 19 pages supplemental materia

    Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2_2O6_6 in a transverse field: Geometric frustration and quantum renormalization effects

    Full text link
    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2_2O6_6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and figure
    corecore