4,072 research outputs found
The magnetic exchange parameters and anisotropy of the quasi-two dimensional antiferromagnet NiPS
Neutron inelastic scattering has been used to measure the magnetic
excitations in powdered NiPS, a quasi-two dimensional antiferromagnet with
spin on a honeycomb lattice. The spectra show clear, dispersive magnons
with a meV gap at the Brillouin zone center. The data were fitted
using a Heisenberg Hamiltonian with a single-ion anisotropy assuming no
magnetic exchange between the honeycomb planes. Magnetic exchange interactions
up to the third intraplanar nearest-neighbour were required. The fits show
robustly that NiPS has an easy axis anisotropy with meV and
that the third nearest-neighbour has a strong antiferromagnetic exchange of
meV. The data can be fitted reasonably well with either
or , however the best quantitative agreement with high-resolution data
indicate that the nearest-neighbour interaction is ferromagnetic with meV and that the second nearest-neighbour exchange is small and
antiferromagnetic with meV. The dispersion has a minimum in the
Brillouin zone corner that is slightly larger than that at the Brillouin zone
center, indicating that the magnetic structure of NiPS is close to being
unstable.Comment: 21 pages, 7 figures, 33 reference
Reasoning About a Service-oriented Programming Paradigm
This paper is about a new way for programming distributed applications: the
service-oriented one. It is a concept paper based upon our experience in
developing a theory and a language for programming services. Both the
theoretical formalization and the language interpreter showed us the evidence
that a new programming paradigm exists. In this paper we illustrate the basic
features it is characterized by
Spectrum of a magnetized strong-leg quantum spin ladder
Inelastic neutron scattering is used to measure the spin excitation spectrum
of the Heisenberg ladder material (CHN)CuBr in its
entirety, both in the gapped spin-liquid and the magnetic field induced
Tomonaga-Luttinger spin liquid regimes. A fundamental change of the spin
dynamics is observed between these two regimes. DMRG calculations
quantitatively reproduce and help understand the observed commensurate and
incommensurate excitations. The results validate long-standing quantum field
theoretical predictions, but also test the limits of that approach
Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore YbTiO in Magnetic Field
The frustrated pyrochlore magnet YbTiO has the remarkable
property that it orders magnetically, but has no propagating magnons over wide
regions of the Brillouin zone. Here we use inelastic neutron scattering to
follow how the spectrum evolves in cubic-axis magnetic fields. At high fields
we observe in addition to dispersive magnons also a two-magnon continuum, which
grows in intensity upon reducing the field and overlaps with the one-magnon
states at intermediate fields leading to strong renormalization of the
dispersion relations, and magnon decays. Using heat capacity measurements we
find that the low and high field regions are smoothly connected with no sharp
phase transition, with the spin gap increasing monotonically in field. Through
fits to an extensive data set we re-evaluate the spin Hamiltonian finding
dominant quantum exchange terms, which we propose are responsible for the
anomalously strong fluctuations and quasiparticle breakdown effects observed at
low fields.Comment: 5 pages main text + 19 pages supplemental materia
Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNbO in a transverse field: Geometric frustration and quantum renormalization effects
The quasi-one-dimensional (1D) Ising ferromagnet CoNbO has recently
been driven via applied transverse magnetic fields through a continuous quantum
phase transition from spontaneous magnetic order to a quantum paramagnet, and
dramatic changes were observed in the spin dynamics, characteristic of weakly
perturbed 1D Ising quantum criticality. We report here extensive single-crystal
inelastic neutron scattering measurements of the magnetic excitations
throughout the three-dimensional (3D) Brillouin zone in the quantum
paramagnetic phase just above the critical field to characterize the effects of
the finite interchain couplings. In this phase, we observe that excitations
have a sharp, resolution-limited line shape at low energies and over most of
the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the
full bandwidth along the strongly dispersive chain direction and resolve clear
modulations of the dispersions in the plane normal to the chains,
characteristic of frustrated interchain couplings in an antiferromagnetic
isosceles triangular lattice. The dispersions can be well parametrized using a
linear spin-wave model that includes interchain couplings and further neighbor
exchanges. The observed dispersion bandwidth along the chain direction is
smaller than that predicted by a linear spin-wave model using exchange values
determined at zero field, and this effect is attributed to quantum
renormalization of the dispersion beyond the spin-wave approximation in fields
slightly above the critical field, where quantum fluctuations are still
significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and
figure
- …