10 research outputs found
A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions
It is expected, and regionally observed, that energy demand will soon be
covered by a widespread deployment of renewable energy sources. However, the
weather and climate driven energy sources are characterized by a significant
spatial and temporal variability. One of the commonly mentioned solutions to
overcome the mismatch between demand and supply provided by renewable
generation is a hybridization of two or more energy sources in a single power
station (like wind-solar, solar-hydro or solar-wind-hydro). The operation of
hybrid energy sources is based on the complementary nature of renewable
sources. Considering the growing importance of such systems and increasing
number of research activities in this area this paper presents a comprehensive
review of studies which investigated, analyzed, quantified and utilized the
effect of temporal, spatial and spatio-temporal complementarity between
renewable energy sources. The review starts with a brief overview of available
research papers, formulates detailed definition of major concepts, summarizes
current research directions and ends with prospective future research
activities. The review provides a chronological and spatial information with
regard to the studies on the complementarity concept.Comment: 34 pages 7 figures 3 table
Complementarity of wind and solar power in North Africa: Potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
With growing gas and oil prices, electricity generation based on these fossil fuels is becoming increasingly expensive. Furthermore, the vision of natural gas as a transition fuel is subject to many constraints and uncertainties of economic, environmental, and geopolitical nature. Consequently, renewable energies such as solar and wind power are expected to reach new records of installed capacity over the upcoming years. Considering the above, North Africa is one of the regions with the largest renewable resource potential globally. While extensively studied in the literature, these resources remain underutilized. Thus, to contribute to their future successful deployment and integration with the power system, this study presents a spatial and temporal analysis of the nature of solar and wind resources over North Africa from the perspective of energy droughts. Both the frequency and maximal duration of energy droughts are addressed. Both aspects of renewablesâ variable nature have been evaluated in the North Atlantic Oscillation (NAO) context. The analysis considers the period between 1960 and 2020 based on hourly reanalysis data (i.e., near-surface shortwave irradiation, wind speed, and air temperature) and the Hurrel NAO index. The findings show an in-phase relationship between solar power and winter NAO index, particularly over the coastal regions in western North Africa and opposite patterns in its eastern part. For wind energy, the connection with NAO has a more zonal pattern, with negative correlations in the north and positive correlations in the south. Solar energy droughts dominate northern Tunisia, Algeria, and Morocco, while wind energy droughts mainly occur in the Atlas Mountains range. On average, solar energy droughts tend not to exceed 2â3 consecutive days, with the longest extending for five days. Wind energy droughts can be as prolonged as 80 days (Atlas Mountains). Hybridizing solar and wind energy reduces the potential for energy droughts significantly. At the same time, the correlation between their occurrence and the NAO index remains low. These findings show the potential for substantial resilience to inter-annual climate variability, which could benefit the future stability of renewables-dominated power systems.Graphical abstrac
Assessment of solar and wind energy complementarity in Algeria
The recent transition towards sustainable energy resources, aiming for the decarbonisation of the electrical power sector has gained global and regional importance. Therefore, there is a great need to create roadmaps to efficiently achieve this goal. In this regard, this paper evaluates the spatial and temporal complementarity between solar and wind energy in Algeria for different timescales. To this end, a grid with 0.5\ub0 x 0.5\ub0 spatial resolution that covers the Algerian territory is created and then representative datasets of wind speed and solar radiation were obtained for each point. The Spearmanâs rank correlation coefficient is applied as an index to measure the relationship between the underlying resources. The results of this work indicate the existence of moderate complementarity on daily timescale in the coastal regions. The highest complementarity is observed in the province of Annaba, with a complementarity index equals â0.52. Whereas, the south of the country is characterized by synchronised solar and wind resources. Further analysis reveals that the assessment of complementarity based on power generation or resource potential leads almost to the same results. The relationship analysis shows good concordance with a determination coefficient of 0.98, which means that the components specifications have a low impact on the complementarity index. Additionally, dispersed wind systems show a promising smoothing effect, while less spatial complementarity is observed for solar-solar and solar-wind scenarios. The analysis performed in this paper provides informative guidelines for future investments in Algeria by identifying sites with the highest complementarity between solar and wind resources. https://www.sciencedirect.com/science/article/pii/S019689042100346
Complementarity of wind and solar power in North Africa: Potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
With growing gas and oil prices, electricity generation based on these fossil fuels is becoming increasingly expensive. Furthermore, the vision of natural gas as a transition fuel is subject to many constraints and uncertainties of economic, environmental, and geopolitical nature. Consequently, renewable energies such as solar and wind power are expected to reach new records of installed capacity over the upcoming years. Considering the above, North Africa is one of the regions with the largest renewable resource potential globally. While extensively studied in the literature, these resources remain underutilized. Thus, to contribute to their future successful deployment and integration with the power system, this study presents a spatial and temporal analysis of the nature of solar and wind resources over North Africa from the perspective of energy droughts. Both the frequency and maximal duration of energy droughts are addressed. Both aspects of renewablesâ variable nature have been evaluated in the North Atlantic Oscillation (NAO) context. The analysis considers the period between 1960 and 2020 based on hourly reanalysis data (i.e., near-surface shortwave irradiation, wind speed, and air temperature) and the Hurrel NAO index. The findings show an in-phase relationship between solar power and winter NAO index, particularly over the coastal regions in western North Africa and opposite patterns in its eastern part. For wind energy, the connection with NAO has a more zonal pattern, with negative correlations in the north and positive correlations in the south. Solar energy droughts dominate northern Tunisia, Algeria, and Morocco, while wind energy droughts mainly occur in the Atlas Mountains range. On average, solar energy droughts tend not to exceed 2â3 consecutive days, with the longest extending for five days. Wind energy droughts can be as prolonged as 80 days (Atlas Mountains). Hybridizing solar and wind energy reduces the potential for energy droughts significantly. At the same time, the correlation between their occurrence and the NAO index remains low. These findings show the potential for substantial resilience to inter-annual climate variability, which could benefit the future stability of renewables-dominated power systems
Assessment of the biological effects of biofouling and antibiofouling EDCs: Gaeta Harbor (South Italy) benthic communities' analysis by biodiversity indices and quantitative gpx4 expression.
The most representative organisms of the Harbor
of Gaeta Gulf in South Italy were analyzed for biofouling
by visual census and confirmed later by molecular
approach on an artificial Conatex panel dipped 3 m into a
eutrophic area during the Covid-19 pandemic. Mitochondrial Cytochrome C oxidase subunit 1(COI) gene was
sequenced from 20 different marine species (flora: 2 families, 2 orders; fauna: 16 families, 11 orders) to test whether
the morphology-based assignment of the most common
biofouling member was supported by DNA-based species
identification. Twelve months of submersion resulted in
generation of sufficient data to obtain a facies climax
represented mainly by the bivalve mollusk, Mytilus
galloprovincialis. Specific diversity and variations of the
biofouling biomasses were analyzed using two different
anti-biofouling paints: an endocrine disrupting chemical
(EDC)-containing metal biocide, and a biocide-free paint.
Also, their effects on detoxification and reproductive health
of M. galloprovincialis were evaluated using glutathione
S-transferase enzymatic activity and RTqPCR expression
of the fertility antioxidant gene glutathione peroxidase 4
(gpx4). The obtained data provide useful indications on
which future investigations may be focused and may
become a potential management tool for a harbor biofouling database to assist local administrations in EDCs
protection of autochthonous benthic communities and their
fertility using innovative antifouling paints