26 research outputs found

    Sensitive glyphosate electrochemiluminescence immunosensor based on electrografted carbon nanodots

    Full text link
    A novel electrochemiluminescence (ECL) immunosensor based on electrografted carbon nanodots (CND) is developed for the sensitive determination of glyphosate in soy milk and tea. Nitrogen rich CND were synthesized by microwave radiations using mild conditions and following the principles of green chemistry. L-Arginine and 3,3′-diamino-N-methyldipropylamine were selected as precursors. CND were exhaustively characterized as well as the resulting nanostructured electrodes after CND electrografting. The high stability of CND nanostructured electrode together with the high electrical conductivity and the improvement of the electrochemiluminescent properties from the luminophore [Ru(bpy)3]2+ makes it an excellent electrochemiluminescence detection platform for biosensing assays. The application to biosensors was assessed by combination with an immunoassay based on magnetic nanoparticles, in which anti-glyphosate-IgG coupled magnetic particles (MP-Ab) was used as recognition element of the analyte, glyphosate. The developed ECL immunosensor was successfully applied for the detection of glyphosate in a wide linear range from 28.9 to 200 pg/mL, a sensitivity of 3.38 × 10−3 mL/pg and a detection limit of 8.66 pg/mL. The immunosensor response is stable and reproducible and it has been applied to the determination of glyphosate in tea and soy milk, with results that agree with those provided by an ELISA kit involving the same immunoreagentsThis work has been supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (CTQ2017-84309-C2-1-R; RED2018-102412-T) and Comunidad Autónoma de Madrid (P2018/NMT-4349 TRANSNANOAVANSENS Program and 2017-T1/BIO-5435 Atracción de Talento Project

    Direct Covalent Immobilization of new Nitrogen-doped Carbon Nanodots by Electrografting for Sensing Applications

    Full text link
    This paper reports a facile strategy to covalently immobilize nanosized carbon dots (CD) onto carbon conductive surfaces for sensing applications. The carbon nanodots designed with surface amine groups (N-CD) can be electrografted onto carbon electrodes and, thus, easily covalently immobilized on these conductive surfaces. They have been synthetized by a carbonization method microwave-assisted using preselected low cost and biocompatible precursors, such as D-fructose as primary carbon source and urea as N-donor reagent to obtain peripheral enriched nitrogen CD. The synthetized nanomaterial has been characterized by different techniques, that confirm the presence of size-regular amorphous structures with blue fluorescence when are irradiated with UV light. The highly stable immobilization of N-CD onto the electrode surfaces by electrografting provides hybrid electrodes with greater relative surface area and improved electron transfer properties, demonstrating to be a great promise for electrochemical sensing. Because of its good electrical conductivity, electrical properties, abundant edges sites and high catalytic activity, N-CD immobilized on carbon electrodes efficient amplify the electrochemiluminiscence (ECL) signal from the luminophore [Ru(bpy)3]2+ in a taurine sensor. A linear concentration range from 126 to 1000 μM, a sensitivity of 7.40ⅹ10-4 μM-1 and a detection limit of 37.8 μM were determined for the taurine sensorThis work has been supported by the Spanish Ministerio de Ciencia, Innovación y Universidades through projects CTQ2017-84309-C2-1-R and RED2018-102412-T, and Comunidad Autónoma de Madrid (S2018/NMT-4349 TRANSNANOAVANSENS-CM Program and 2017-T1/BIO-5435 Atracción de Talento Project). The authors thank Professor Hector Abruña the critical review of this wor

    Bifunctional carbon nanodots for highly sensitive HER2 determination based on electrochemiluminescence

    Full text link
    Early detection of breast cancer increases the chances of achieving adequate and successful treatment as soon as possible. In this work, a promising disposable electrochemiluminescent immunosensor has been developed for simple, efficient detection of the HER2 protein, a breast cancer biomarker. Nitrogen-rich carbon nanodots were synthesized with two functions: to provide functional groups for covalent immobilization of HER2 antibodies and to act as co-reactants in the electrochemiluminescent process. The proposed immunosensor responded linearly to HER2 concentration over a wide range, showing a detection limit of 20.4 pg mL−1. The reliability of this biosensor was confirmed by analyzing HER2 in the presence of another tumor biomarker (CEA), as well as various proteins and sugars. In addition, this proposed strategy presented good stability and applicability in the analysis of human serum samples, showing great potential for applications in the early diagnosis of breast cancerThis work has been supported by the Spanish Ministry of Science, Innovation and Universities (CTQ2017-84309-C2-1-R; RED2018- 102412-T) and by the Autonomous Community of Madrid (Talent Attraction Project 2017-T1/BIO-5435 and the P2018/NMT4349 TRANSNANOAVANSENS Program

    Carbon nanodot–based electrogenerated chemiluminescence biosensor for miRNA-21 detection

    Full text link
    A simple carbon nanodot–based electrogenerated chemiluminescence biosensor is described for sensitive and selective detection of microRNA-21 (miRNA-21), a biomarker of several pathologies including cardiovascular diseases (CVDs). The photoluminescent carbon nanodots (CNDs) were obtained using a new synthesis method, simply by treating tiger nut milk in a microwave reactor. The synthesis is environmentally friendly, simple, and efficient. The optical properties and morphological characteristics of the CNDs were exhaustively investigated, confirming that they have oxygen and nitrogen functional groups on their surfaces and exhibit excitation-dependent fluorescence emission, as well as photostability. They act as co-reactant agents in the anodic electrochemiluminescence (ECL) of [Ru(bpy)3]2+, producing different signals for the probe (single-stranded DNA) and the hybridized target (double-stranded DNA). These results paved the way for the development of a sensitive ECL biosensor for the detection of miRNA-21. This was developed by immobilization of a thiolated oligonucleotide, fully complementary to the miRNA-21 sequence, on the disposable gold electrode. The target miRNA-21 was hybridized with the probe on the electrode surface, and the hybridization was detected by the enhancement of the [Ru(bpy)3]2+/DNA ECL signal using CNDs. The biosensor shows a linear response to miRNA-21 concentration up to 100.0 pM with a detection limit of 0.721 fM. The method does not require complex labeling steps, and has a rapid response. It was successfully used to detect miRNA-21 directly in serum samples from heart failure patients without previous RNA extraction neither amplification processThis study is funded by the Comunidad Autónoma de Madrid (Spain) projects (TRANSNANOAVANSENS, S2018/NMT-4349, CAM/B2017/BMD-3686) and Ministerio de Economía, Industria y Competitividad (Spanish Government) projects: CTQ2015-71955-REDT (ELECTROBIONET), CTQ2014-53334-C2-1-R and PID2020-116728RB-I0

    Synergistic enhancement of electrochemiluminescence through hybridization of α-Ge nanolayers and gold nanoparticles for highly sensitive detection of tyramine

    Full text link
    This work presents a novel approach for detecting biogenic amine tyramine using a sensitive and disposable electrochemiluminescent sensor. The sensor is fabricated by modifying a screen-printed carbon electrode surface with two nanomaterials, α-Ge nanolayers and AuNP, which synergistically enhance the electrochemiluminescence response. The sensor was characterized using various techniques such as SEM-EDX, EIS, Raman, and AFM. The principle of the biosensor relays on the fact that tyramine molecule acts as an analyte and co-reactant, which interacts with the luminophore [Ru(bpy)3] 2+ on the sensor surface. The proposed sensor shows a linear response to tyramine concentration, with a detection limit of 2.28 µM. The sensor successfully detected tyramine in avocado samples, demonstrating its potential for practical applicationsThis work has been supported the Comunidad Autonoma ´ de Madrid (2021-5A/BIO-20943 Talent Attraction Project, SI3/PJI/2021-00341 and S2018/NMT-4349 TRANSNANOAVANSENS-CM Program) and by the Spanish Ministerio de Ciencia e Innovacion ´ (PID2020-116728RBI00, PDC2021-120782-C21, PID2019-106268GB-C32 and TED2021- 129738B-I00). This work has also been supported by the Spanish MINECO (PID2019-106268GB-C32, CEX2018-000805-M and PDC2021- 120782-C21). We acknowledge the support from the “(MAD2D-CM)- UAM” project funded by Comunidad de Madrid, by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Unio

    Bifunctional Au@Pt/Au nanoparticles as electrochemiluminescence signaling probes for SARS-CoV-2 detection

    Full text link
    A novel immunosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) for the sensitive determination of N protein of the SARS-CoV-2 coronavirus is described. For this purpose, bifunctional core@shell nanoparticles composed of a Pt-coated Au core and finally decorated with small Au inlays (Au@Pt/Au NPs) have been synthesized to act as ECL acceptor, using [Ru (bpy)3]2+ as ECL donor. These nanoparticles are efficient signaling probes in the immunosensor developed. The proposed ECL-RET immunosensor has a wide linear response to the concentration of N protein of the SARS-CoV-2 coronavirus with a detection limit of 1.27 pg/mL. Moreover, it has a high stability and shows no response to other proteins related to different virus. The immunosensor has achieved the quantification of N protein of the SARS-CoV-2 coronavirus in saliva samples. Results are consistent with those provided by a commercial colorimetric ELISA kit. Therefore, the developed immunosensor provides a feasible and reliable tool for early and effective detection of the virus to protect the populationThe authors wish to express their sincere thanks to the Spanish Ministerio de Ciencia e Innovacion (MICINN) (PID2020-116728RB-I00 and PID2020-115204RB-I00) and the Comunidad Autonoma ´ de Madrid (S2018/NMT-4349 TRANSNANOAVANSENS-CM Program, SI3/PJI/ 2021–00341 and 2021-5A/BIO-20943 Talent Attraction Project) for the financial support. C. Toyos-Rodríguez acknowledges the MICINN for the award of a FPI Grant (PRE2018-084953). A. de la Escosura-Muniz ˜ also thanks the MICINN for the research founding by a “Ramon ´ y Cajal” contract (RyC-2016-20299

    Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    Get PDF
    The observation of ultrahigh energy neutrinos (UHEνs) has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν) or in the Earth crust (Earth-skimming ν), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.Fil: Allekotte, Ingomar. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). Grupo de Partículas y Campos; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Almela, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Asorey, Hernán Gonzalo. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). Grupo de Partículas y Campos; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). Grupo de Partículas y Campos; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: de la Vega, Gonzalo Andrés. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Dova, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Etchegoyen, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Filevich, Alberto. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Gamarra, R. F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Garcia, Beatriz Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Gitto, J.. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Golup, Geraldina Tamara. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes); Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gomez Albarracin, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Gomez Berisso, Mariano. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Guardincerri, Yann. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Hansen, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Harari, Diego Dario. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes); Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Jarne, Cecilia Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Josebachuili Ogando, Mariela Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Lucero, Luis Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Mariazzi, Analisa Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Melo, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Micheletti, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Rosario. Instituto de Fisica de Rosario (i); ArgentinaFil: Mollerach, Maria Silvia. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigaciones y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes); Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Moreno, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Pallotta, Juan Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégicos para la Defensa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Piegaia, Ricardo Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Pieroni, Pablo Emanuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Platino, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Ponce, Victor Hugo. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégicos para la Defensa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Ravignani Guerrero, Diego. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Ristori, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégicos para la Defensa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Roulet, Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Rovero, Adrian Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Sanchez, Federico Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Sciutto, Sergio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Sidelnik, Iván Pedro. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). Grupo de Partículas y Campos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Suarez, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Supanitsky, Alberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); ArgentinaFil: Tapia Casanova, Alex Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Tiffenberg, Javier Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Videla, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Wahlberg, Hernan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Física La Plata; ArgentinaFil: Wainberg, Oscar Isaac. Comision Nacional de Energia Atomica. Gerencia del Area Investicaciones y Aplicaciones No Nucleares; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: Wundheiler, Brian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnologías en Detección y Astropartículas; ArgentinaFil: The Pierre Auger collaboration

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Enhanced electrochemiluminescence by ZnO nanowires for taurine determination

    Full text link
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo periodA novel electrochemiluminescence (ECL) sensor for the sensitive detection of taurine was developed. Taurine contains an aliphatic amine that gives it co-reactant properties. The ECL response of the taurine/[Ru(bpy)3]2+ system was analyzed on two different electrodes surfaces, screen-printed graphene and gold electrodes, before and after modification with ZnO nanowires (ZnO NWs). The ZnO NWs modified electrode yielded an enhanced ECL signal, allowing rapid detection of taurine at 5.5 × 10−6 mol L−1 detection limit. The ECL signal is stable and reproducible. The sensor has been applied to the determination of taurine in a commercial taurine supplementThe financial supports from the Spanish Ministerio de Ciencia, Innovación y Universidades (CTQ2017-84309-C2-1-R and CTQ2017-84309-C2-2-R) and Comunidad Autónoma de Madrid (NANOAVANSENS Program) are gratefully acknowledged. IMDEA Nanociencia acknowledges support from the 'Severo Ochoa' Programme for Centres of Excellence in R&D (Ministerio de Ciencia, Innovación y Universidades, Grant SEV-2016-0686). C.G-S. and T.G-E. acknowledges the Atracción de Talento Project (2017-T1/BIO-5435) and youth employment program (PEJD-2017-PRE/SAL-3834) from the Comunidad de Madrid, respectively. Authors wish to thank SIdI (Servicio Interdepartamental de Investigación, UAM) for the HPLC measurement
    corecore