228 research outputs found
A pole-to-pole map of hydrocarbons in Saturn's upper stratosphere and mesosphere
We analyze data from the final two years of the Cassini mission to retrieve
the distributions of methane, ethane, acetylene, ethylene, and benzene in
Saturn's upper stratosphere and mesosphere from stellar occultations observed
by the Ultraviolet Imaging Spectrograph (UVIS), spanning pole-to-pole. These
observations represent the first 2D snapshot with latitude and depth of
Saturn's photochemical production region around northern summer solstice. Using
UVIS occultations and CIRS limb scans, we derive temperature-pressure profiles
and atmospheric structure models for each occultation latitude. W detect a
strong meridional trend in the homopause pressure level, which ranges from
approximately 0.05 microbar around the subsolar point to around 5 microbar at
the poles, implying much weaker mixing at the poles than near the subsolar
point. This trend could be explained by upwelling at low latitudes and
downwelling at high latitudes, requiring vertical wind speeds under 2 cm/s.
Photochemical product distributions follow this trend and also show a clear
seasonal trend at pressures between 0.01 and 10 microbar, with higher
abundances in the summer hemisphere. We compare the observed distributions with
results from 1D seasonal photochemical models, with and without ion chemistry,
to explore the impact of ion chemistry. We find that ion chemistry is
particularly important for matching the observed C6H6 distribution, while its
impact on other species is less pronounced. The best agreement between the
models and the observations is obtained in the summer hemisphere. Disagreements
between model and observations in the winter hemisphere and auroral region may
be due to the lack of transport by global circulation and auroral electron and
ion precipitation in our photochemical models. Finally, we compare C2H2
profiles from UVIS occultations with CIRS limb scans, finding good agreement
where they overlap.Comment: 66 pages, 11 figure
Assimilation of Temperatures and Column Dust Opacities Measured by ExoMars TGO-ACS-TIRVIM During the MY34 Global Dust Storm
Funding Information: ExoMars is a space mission of ESA and Roscosmos. The Atmospheric Chemistry Suite (ACS) experiment is led by IKI, the Space Research Institute in Moscow, Russia, assisted by LATMOS in France. This work, exploiting ACS/TIRVIM data, acknowledges funding by the CNES. The science operations of ACS are funded by Roscosmos and ESA. The ACS/TIRVIM team at IKI acknowledges the subsidy of the Ministry of Science and Higher Education of Russia. The authors acknowledge Sandrine Guerlet and the ACS/TGO team for supplying the data and the data center ESPRI/IPSL for their help in accessing the data. R. M. B. Young acknowledges funding from the UAE University grants G00003322 and G00003407. Supercomputing resources were provided by the UAE University High Performance Computing, with technical support from Anil Thomas and Asma Alneyadi, and at LMD by the IPSL mesocentre. The authors thank Luca Montabone for access to processed versions of Mars Climate Sounder temperature and dust observations, and Thomas Navarro and Claus Gebhardt for useful discussions.Peer reviewe
Migrating Thermal Tides in the Martian Atmosphere During Aphelion Season Observed by EMM/EMIRS
Funding Information: Funding for development of the EMM mission was provided by the United Arab Emirates (UAE) government, and to co‐authors outside of the UAE by the Mohammed bin Rashid Space Centre (MBRSC). RMBY acknowledges funding from UAE University grants G00003322 and G00003407.Peer reviewe
Saturn's atmospheric response to the large influx of ring material inferred from Cassini INMS measurements
During the Grand Finale stage of the Cassini mission, organic-rich ring
material was discovered to be flowing into Saturn's equatorial upper atmosphere
at a surprisingly large rate. Through a series of photochemical models, we have
examined the consequences of this ring material on the chemistry of Saturn's
neutral and ionized atmosphere. We find that if a substantial fraction of this
material enters the atmosphere as vapor or becomes vaporized as the solid ring
particles ablate upon atmospheric entry, then the ring-derived vapor would
strongly affect the composition of Saturn's ionosphere and neutral
stratosphere. Our surveys of Cassini infrared and ultraviolet remote-sensing
data from the final few years of the mission, however, reveal none of these
predicted chemical consequences. We therefore conclude that either (1) the
inferred ring influx represents an anomalous, transient situation that was
triggered by some recent dynamical event in the ring system that occurred a few
months to a few tens of years before the 2017 end of the Cassini mission, or
(2) a large fraction of the incoming material must have been entering the
atmosphere as small dust particles less than ~100 nm in radius, rather than as
vapor or as large particles that are likely to ablate. Future observations or
upper limits for stratospheric neutral species such as HCN, HCN, and CO
at infrared wavelengths could shed light on the origin, timing, magnitude, and
nature of a possible vapor-rich ring-inflow event.Comment: accepted in Icaru
An intense narrow equatorial jet in Jupiter’s lower stratosphere observed by JWST
The atmosphere of Jupiter has east–west zonal jets that alternate as a function of latitude as tracked by cloud motions at tropospheric levels. Above and below the cold tropopause at ~100 mbar, the equatorial atmosphere is covered by hazes at levels where thermal infrared observations used to characterize the dynamics of the stratosphere lose part of their sensitivity. James Webb Space Telescope observations of Jupiter in July 2022 show these hazes in higher detail than ever before and reveal the presence of an intense (140 m s−1) equatorial jet at 100–200 mbar (70 m s−1 faster than the zonal winds at the cloud level) that is confined to ±3° of the equator and is located below stratospheric thermal oscillations that extend at least from 0.1 to 40 mbar and repeat in multiyear cycles. This suggests that the new jet is a deep part of Jupiter’s Equatorial Stratospheric Oscillation and may therefore vary in strength over time.JWST-ERS-01373, NASA/ESA Hubble Space Telescope programmes no. 16913, 15502 and 16790, PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/, Grupos Gobierno Vasco IT1742-22. I.d.; European Research Council Consolidator Grant (under the European Union’s Horizon 2020 research and innovation programme, grant agreement no. 723890), STFC PhD Studentship, NASA grants 80NSSC21K1418 and 80NSSC19K0894
Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT
Amazon forests exert a major influence on the global carbon cycle, but quantifying the impact is complicated by diverse landscapes and sparse data. Here we examine seasonal carbon balance in southern Amazonia using new measurements of column-averaged dry air mole fraction of CO2 (XCO2) and solar induced chlorophyll fluorescence (SIF) from the Greenhouse Gases Observing Satellite (GOSAT) from July 2009 to December 2010. SIF, which reflects gross primary production (GPP), is used to disentangle the photosynthetic component of land-atmosphere carbon exchange. We find that tropical transitional forests in southern Amazonia exhibit a pattern of low XCO2 during the wet season and high XCO2 in the dry season that is robust to retrieval methodology and with seasonal amplitude double that of cerrado ecosystems to the east (4 ppm versus 2 ppm), including enhanced dilution of 2.5 ppm in the wet season. Concomitant measurements of SIF, which are inversely correlated with XCO2 in southern Amazonia (r =0.53, p<0.001), indicate that the enhanced variability is driven by seasonal changes in GPP due to coupling of strong vertical mixing with seasonal changes in underlying carbon exchange. This finding is supported by forward simulations of the Goddard Chemistry Transport Model (GEOS-Chem) which show that local carbon uptake in the wet season and loss in the dry season due to emissions by ecosystem respiration and biomass burning produces best agreement with observed XCO2. We conclude that GOSAT provides critical measurements of carbon exchange in southern Amazonia, but more samples are needed to examine moist Amazon forests farther north. Citation: Parazoo, N. C., et al. (2013), Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT
Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter
Global dust storms on Mars are rare but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere, primarily owing to solar heating of the dust. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes, as well as a decrease in the water column at low latitudes. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere
- …