228 research outputs found

    A pole-to-pole map of hydrocarbons in Saturn's upper stratosphere and mesosphere

    Full text link
    We analyze data from the final two years of the Cassini mission to retrieve the distributions of methane, ethane, acetylene, ethylene, and benzene in Saturn's upper stratosphere and mesosphere from stellar occultations observed by the Ultraviolet Imaging Spectrograph (UVIS), spanning pole-to-pole. These observations represent the first 2D snapshot with latitude and depth of Saturn's photochemical production region around northern summer solstice. Using UVIS occultations and CIRS limb scans, we derive temperature-pressure profiles and atmospheric structure models for each occultation latitude. W detect a strong meridional trend in the homopause pressure level, which ranges from approximately 0.05 microbar around the subsolar point to around 5 microbar at the poles, implying much weaker mixing at the poles than near the subsolar point. This trend could be explained by upwelling at low latitudes and downwelling at high latitudes, requiring vertical wind speeds under 2 cm/s. Photochemical product distributions follow this trend and also show a clear seasonal trend at pressures between 0.01 and 10 microbar, with higher abundances in the summer hemisphere. We compare the observed distributions with results from 1D seasonal photochemical models, with and without ion chemistry, to explore the impact of ion chemistry. We find that ion chemistry is particularly important for matching the observed C6H6 distribution, while its impact on other species is less pronounced. The best agreement between the models and the observations is obtained in the summer hemisphere. Disagreements between model and observations in the winter hemisphere and auroral region may be due to the lack of transport by global circulation and auroral electron and ion precipitation in our photochemical models. Finally, we compare C2H2 profiles from UVIS occultations with CIRS limb scans, finding good agreement where they overlap.Comment: 66 pages, 11 figure

    Assimilation of Temperatures and Column Dust Opacities Measured by ExoMars TGO-ACS-TIRVIM During the MY34 Global Dust Storm

    Get PDF
    Funding Information: ExoMars is a space mission of ESA and Roscosmos. The Atmospheric Chemistry Suite (ACS) experiment is led by IKI, the Space Research Institute in Moscow, Russia, assisted by LATMOS in France. This work, exploiting ACS/TIRVIM data, acknowledges funding by the CNES. The science operations of ACS are funded by Roscosmos and ESA. The ACS/TIRVIM team at IKI acknowledges the subsidy of the Ministry of Science and Higher Education of Russia. The authors acknowledge Sandrine Guerlet and the ACS/TGO team for supplying the data and the data center ESPRI/IPSL for their help in accessing the data. R. M. B. Young acknowledges funding from the UAE University grants G00003322 and G00003407. Supercomputing resources were provided by the UAE University High Performance Computing, with technical support from Anil Thomas and Asma Alneyadi, and at LMD by the IPSL mesocentre. The authors thank Luca Montabone for access to processed versions of Mars Climate Sounder temperature and dust observations, and Thomas Navarro and Claus Gebhardt for useful discussions.Peer reviewe

    Migrating Thermal Tides in the Martian Atmosphere During Aphelion Season Observed by EMM/EMIRS

    Get PDF
    Funding Information: Funding for development of the EMM mission was provided by the United Arab Emirates (UAE) government, and to co‐authors outside of the UAE by the Mohammed bin Rashid Space Centre (MBRSC). RMBY acknowledges funding from UAE University grants G00003322 and G00003407.Peer reviewe

    Saturn's atmospheric response to the large influx of ring material inferred from Cassini INMS measurements

    Full text link
    During the Grand Finale stage of the Cassini mission, organic-rich ring material was discovered to be flowing into Saturn's equatorial upper atmosphere at a surprisingly large rate. Through a series of photochemical models, we have examined the consequences of this ring material on the chemistry of Saturn's neutral and ionized atmosphere. We find that if a substantial fraction of this material enters the atmosphere as vapor or becomes vaporized as the solid ring particles ablate upon atmospheric entry, then the ring-derived vapor would strongly affect the composition of Saturn's ionosphere and neutral stratosphere. Our surveys of Cassini infrared and ultraviolet remote-sensing data from the final few years of the mission, however, reveal none of these predicted chemical consequences. We therefore conclude that either (1) the inferred ring influx represents an anomalous, transient situation that was triggered by some recent dynamical event in the ring system that occurred a few months to a few tens of years before the 2017 end of the Cassini mission, or (2) a large fraction of the incoming material must have been entering the atmosphere as small dust particles less than ~100 nm in radius, rather than as vapor or as large particles that are likely to ablate. Future observations or upper limits for stratospheric neutral species such as HC3_3N, HCN, and CO2_2 at infrared wavelengths could shed light on the origin, timing, magnitude, and nature of a possible vapor-rich ring-inflow event.Comment: accepted in Icaru

    An intense narrow equatorial jet in Jupiter’s lower stratosphere observed by JWST

    Get PDF
    The atmosphere of Jupiter has east–west zonal jets that alternate as a function of latitude as tracked by cloud motions at tropospheric levels. Above and below the cold tropopause at ~100 mbar, the equatorial atmosphere is covered by hazes at levels where thermal infrared observations used to characterize the dynamics of the stratosphere lose part of their sensitivity. James Webb Space Telescope observations of Jupiter in July 2022 show these hazes in higher detail than ever before and reveal the presence of an intense (140 m s−1) equatorial jet at 100–200 mbar (70 m s−1 faster than the zonal winds at the cloud level) that is confined to ±3° of the equator and is located below stratospheric thermal oscillations that extend at least from 0.1 to 40 mbar and repeat in multiyear cycles. This suggests that the new jet is a deep part of Jupiter’s Equatorial Stratospheric Oscillation and may therefore vary in strength over time.JWST-ERS-01373, NASA/ESA Hubble Space Telescope programmes no. 16913, 15502 and 16790, PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/, Grupos Gobierno Vasco IT1742-22. I.d.; European Research Council Consolidator Grant (under the European Union’s Horizon 2020 research and innovation programme, grant agreement no. 723890), STFC PhD Studentship, NASA grants 80NSSC21K1418 and 80NSSC19K0894

    Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT

    Get PDF
    Amazon forests exert a major influence on the global carbon cycle, but quantifying the impact is complicated by diverse landscapes and sparse data. Here we examine seasonal carbon balance in southern Amazonia using new measurements of column-averaged dry air mole fraction of CO2 (XCO2) and solar induced chlorophyll fluorescence (SIF) from the Greenhouse Gases Observing Satellite (GOSAT) from July 2009 to December 2010. SIF, which reflects gross primary production (GPP), is used to disentangle the photosynthetic component of land-atmosphere carbon exchange. We find that tropical transitional forests in southern Amazonia exhibit a pattern of low XCO2 during the wet season and high XCO2 in the dry season that is robust to retrieval methodology and with seasonal amplitude double that of cerrado ecosystems to the east (4 ppm versus 2 ppm), including enhanced dilution of 2.5 ppm in the wet season. Concomitant measurements of SIF, which are inversely correlated with XCO2 in southern Amazonia (r =0.53, p<0.001), indicate that the enhanced variability is driven by seasonal changes in GPP due to coupling of strong vertical mixing with seasonal changes in underlying carbon exchange. This finding is supported by forward simulations of the Goddard Chemistry Transport Model (GEOS-Chem) which show that local carbon uptake in the wet season and loss in the dry season due to emissions by ecosystem respiration and biomass burning produces best agreement with observed XCO2. We conclude that GOSAT provides critical measurements of carbon exchange in southern Amazonia, but more samples are needed to examine moist Amazon forests farther north. Citation: Parazoo, N. C., et al. (2013), Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT

    Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter

    Get PDF
    Global dust storms on Mars are rare but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere, primarily owing to solar heating of the dust. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes, as well as a decrease in the water column at low latitudes. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere
    corecore