130 research outputs found

    Pharmakologische Einflüsse auf zentrale vestibuläre Kompensationsmechanismen nach einseitigem peripheren Schaden

    Get PDF

    ESBL-plasmids carrying toxin-antitoxin systems can be “cured” of wild-type Escherichia coli using a heat technique

    Get PDF
    Plasmid-encoded extended-spectrum beta-lactamase (ESBL)-enzymes are frequently produced by Escherichia coli. Several ESBL-plasmids contain genes for toxin- antitoxin (TA) systems, which assure the maintenance of plasmids in bacteria and prevent the cells from "post-segregational killing". These systems limit options to "cure" plasmids of ESBL-wild-type strains due to the death of the bacterial cells. A helpful tool to understand the role of ESBL-plasmids in the dissemination of pandemic multi-resistant E. coli are ESBL- plasmid-"cured"-variants (PCVs) and their comparison to ESBL-wild-type strains. The purpose of this study was to construct PCVs of ESBL-wild-type E. coli strains despite the presence of genes for TA systems. Using enhanced temperatures and brain-heart-infusion broth it was possible to construct viable PCVs of wild-type ESBL-E. coli strains. The occurrence of TA system- genes including hok/sok, srnB/C, vagC/D, pemI/K on ESBL-plasmids of replicon types FIA or FIB was demonstrated by bioinformatic analyses. The loss of the plasmid and the genetic identity of PCV and corresponding wild-type strain was confirmed via different methods including plasmid-profile-analysis, pulsed- field gel electrophoresis and bioinformatics using generated whole genome data of the strains. This short report describes the successful construction of viable PCVs of ESBL-wild-type E. coli strains. The results are hence surprising due to the fact that all "cured" ESBL-plasmids contained at least one complete toxin-antitoxin system, whose loss would normally mean the death of bacterial cells

    The Intestinal Roundworm Ascaris suum Releases Antimicrobial Factors Which Interfere With Bacterial Growth and Biofilm Formation

    Get PDF
    Ascariasis is a widespread soil-transmitted helminth infection caused by the intestinal roundworm Ascaris lumbricoides in humans, and the closely related Ascaris suum in pigs. Progress has been made in understanding interactions between helminths and host immune cells, but less is known concerning the interactions of parasitic nematodes and the host microbiota. As the host microbiota represents the direct environment for intestinal helminths and thus a considerable challenge, we studied nematode products, including excretory-secretory products (ESP) and body fluid (BF), of A. suum to determine their antimicrobial activities. Antimicrobial activities against gram-positive and gram-negative bacterial strains were assessed by the radial diffusion assay, while effects on biofilm formation were assessed using the crystal violet static biofilm and macrocolony assays. In addition, bacterial neutralizing activity was studied by an agglutination assay. ESP from different A. suum life stages (in vitro-hatched L3, lung-stage L3, L4, and adult) as well as BF from adult males were analyzed by mass spectrometry. Several proteins and peptides with known and predicted roles in nematode immune defense were detected in ESP and BF samples, including members of A. suum antibacterial factors (ASABF) and cecropin antimicrobial peptide families, glycosyl hydrolase enzymes such as lysozyme, as well as c-type lectin domain-containing proteins. Native, unconcentrated nematode products from intestine-dwelling L4-stage larvae and adults displayed broad-spectrum antibacterial activity. Additionally, adult A. suum ESP interfered with biofilm formation by Escherichia coli, and caused bacterial agglutination. These results indicate that A. suum uses a variety of factors with broad-spectrum antibacterial activity to affirm itself within its microbe-rich environment in the gut

    The Influence in Airforce Soldiers Through Wearing Certain Types of Army-Issue Footwear on Muscle Activity in the Lower Extremities

    Get PDF
    The objective of the study was to analyse the influence of the shape and material of the military footwear worn by soldiers on muscle activity in the lower extremities, and whether such footwear could explain specific strain complaints and traumatic lesions in the region of the lower extremities

    Genomic and Phenotypic Analysis of an ESBL-Producing E. coli ST1159 Clonal Lineage From Wild Birds in Mongolia

    Get PDF
    Background In addition to the broad dissemination of pathogenic extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli in human and veterinary medicine and the community, their occurrence in wildlife and the environment is a growing concern. Wild birds in particular often carry clinically relevant ESBL-producing E. coli. Objectives We analyzed ESBL-producing and non-ESBL-producing E. coli obtained from wild birds in Mongolia to identify phylogenetic and functional characteristics that would explain the predominance of a particular E. coli clonal lineage in this area. Methods We investigated ESBL-producing E. coli using whole-genome sequencing and phylogenetics to describe the population structure, resistance and virulence features and performed phenotypic experiments like biofilm formation and adhesion to epithelial cells. We compared the phenotypic characteristics to non-ESBL-producing E. coli from the same background (Mongolian wild birds) and genomic results to publicly available genomes. Results and Conclusion We found ESBL-producing E. coli sequence type (ST) 1159 among wild birds in Mongolia. This clonal lineage carried virulence features typical for extra-intestinal pathogenic or enterotoxigenic E. coli. Comparative functional experiments suggested no burden of resistance in the ST1159 isolates, which is despite their carriage of ESBL-plasmids. Wild birds will likely disseminate these antibiotic-resistant pathogens further during migration

    ESBL-plasmid carriage in E. coli enhances in vitro bacterial competition fitness and serum resistance in some strains of pandemic sequence types without overall fitness cost

    Get PDF
    Background: Extended spectrum beta lactamase (ESBL)-producing extraintestinal pathogenic Escherichia coli infections are of global interest because of their clinical and economic impact. The ESBL resistance genes disseminate through plasmids, and are found in successful global lineages such as ST131 and ST648. The carriage of plasmids has been suggested to result in a fitness burden, but recently it was shown that ESBL-plasmids enhanced virulence in pandemic ST131 and ST648 lineages without affecting their fitness. Herein, we investigated the influence of ESBL-plasmids on bacterial competition and serum resistance, both of which are essential characteristics of ExPEC during infections. Methods: Triplets of ESBL-plasmid-carrying wildtype (WT), plasmid-cured variant (PCV) and transformant (T) of five ExPEC strains of ST131 and ST648 were used for bacterial competition experiments with colicin-producing commensal E. coli, competitive adhesion experiments and serum survival. In addition, resilience after SDS, acid, osmotic challenges and RNA sequence data were analyzed. Results: In all five strains tested, ESBL-plasmid carriage did not negatively influence E. coli fitness in direct bacterial competition with commensal E. coli in vitro. That is, WTs did not show any disadvantages when compared to their isogenic plasmid-free PCV. For one strain we even found the opposite as PCV17433 was out-competed by a commensal strain, which suggests an even protective role of the ESBL-plasmid carried by the WT17433. Similarly, in the serum-resistance experiments, the PCVs of two strains (PCV17433 and PCV17887) were more sensitive to serum, unlike WTs and Ts. The observed inter-strain differences could be explained by the different genetic content of plasmids carried in those strains. Conclusions: Overall, we found no compelling evidence for an increased burden resulting from the carriage of ESBL-plasmids in the absence of antimicrobial selection pressure in the strains of pandemic ST131 and ST648; rather, the possession of certain ESBL-plasmids was beneficial for some strains in regarding competition fitness and serum survival.Peer Reviewe

    Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli – the role of similar biological processes despite structural diversity

    Get PDF
    Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli

    Plasma Metabolome Alterations Discriminate between COVID-19 and Non-COVID-19 Pneumonia

    Get PDF
    Pneumonia is a common cause of morbidity and mortality and is most often caused by bacterial pathogens. COVID-19 is characterized by lung infection with potential progressive organ failure. The systemic consequences of both disease on the systemic blood metabolome are not fully understood. The aim of this study was to compare the blood metabolome of both diseases and we hypothesize that plasma metabolomics may help to identify the systemic effects of these diseases. Therefore, we profiled the plasma metabolome of 43 cases of COVID-19 pneumonia, 23 cases of non-COVID-19 pneumonia, and 26 controls using a non-targeted approach. Metabolic alterations differentiating the three groups were detected, with specific metabolic changes distinguishing the two types of pneumonia groups. A comparison of venous and arterial blood plasma samples from the same subjects revealed the distinct metabolic effects of pulmonary pneumonia. In addition, a machine learning signature of four metabolites was predictive of the disease outcome of COVID-19 subjects with an area under the curve (AUC) of 86 ± 10 %. Overall, the results of this study uncover systemic metabolic changes that could be linked to the etiology of COVID-19 pneumonia and nonCOVID-19 pneumonia
    • …
    corecore