2 research outputs found

    The Mass of the Black Hole in LMC X-3

    Get PDF
    We analyze a large set of new and archival photometric and spectroscopic observations of LMC X-3 to arrive at a self-consistent dynamical model for the system. Using echelle spectra obtained with the MIKE instrument on the 6.5m Magellan Clay telescope and the UVES instrument on the second 8.2m Very Large Telescope we find a velocity semiamplitude for the secondary star of K2=241.1±6.2K_2=241.1\pm 6.2 km s1^{-1}, where the uncertainty includes an estimate of the systematic error caused by X-ray heating. Using the spectra, we also find a projected rotational velocity of Vrotsini=118.5±6.6V_{\rm rot}\sin i=118.5\pm 6.6 km s1^{-1}. From an analysis of archival BB and VV light curves as well as new BB and VV light curves from the SMARTS 1.3m telescope, we find an inclination of i=69.84±0.37i=69.84\pm 0.37^{\circ} for models that do not include X-ray heating and an inclination of i=69.24±0.72i=69.24\pm 0.72^{\circ} for models that incorporate X-ray heating. Adopting the latter inclination measurement, we find masses of 3.63±0.57M3.63\pm 0.57\,M_{\odot} and 6.98±0.56M6.98\pm 0.56\,M_{\odot} for the companion star and the black hole, respectively. We briefly compare our results with earlier work and discuss some of their implications.Comment: 31 pages, 15 figures, substantial revisions, ApJ, accepte
    corecore