6 research outputs found
症例の予後改善のための,電子ビームCT,4列~320列CTを用いた循環器領域の新しい臨床診断学の開発への貢献
I went to the Stanford University Department of Radiology\u27s three-dimensional (3D) imaging laboratory from 1996 to 1999 to study a novel 3D image processing technique using electron beam computed tomography (CT). When I returned to Japan, I found that multi-slice CT had been available in daily practice since 1998. We have published a total of 152 peer-reviewed papers on diagnostic images in the field of cardiovascular disease. In 2003, when 16-slice CT was available for use in general hospitals, we successfully developed a prototype 256-slice cone-beam CT at the National Institute of Radiological Sciences. We produced several papers discussing the utilities of this prototype CT in both animal and phantom experiments, the concepts and ideas that were currently used for cardiac perfusion and myocardium characteristic study. In 2010, our paper was used as a reference in the American College of Cardiology Foundation Expert Consensus Guideline. The our current topics presented include coronary artery stenosis, coronary arterial plaques, the characteristics of the myocardium, the anatomy of structural and congenital heart disease, and the cardiac function, all using 16-320 slice CT with reduced radiation exposure in CT acquisition. Furthermore, we are now performing novel clinical CT studies combined magnetic resonance imaging (MRI), positron emission tomography, and echocardiography. Using previous image data, we analyzed an epidemiology study using CT findings to predict the occurrence of major cardiovascular adverse events over long-term follow-up periods of more than 100 months (median), one of the longest follow-up periods documented in the literature. We also need to obtain accurate diagnoses for subjects with cardiac failure or fatal arrhythmia of unknown origin, allowing them to receive specific effective therapy for their possible cardiac amyloidosis, cardiac sarcoidosis, or Fabry\u27s disease. Of course, in all CT imaging techniques used for evaluation and monitoring of cardiovascular risk
Identification and Analysis of Flax Resistance Genes to <i>Septoria linicola</i> (Speg.) Garassini
In this study, the flax (Linum usitatissimum L.) genes associated with resistance to the disease pasmo (Septoria linicola (Speg.) Garassini) were mapped using genome resequencing and bulked segregant analysis (BSA) of genomic DNA of the pasmo-resistant parent y62–9, pasmo-susceptible parent y64–5, and F2 generation segregants. Pasmo resistance genes were identified using Gene Ontology (GO) functional prediction and gene annotation methods. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the biological information and molecular mechanisms associated with the flax-pathogen interaction. The results of a quantitative real-time PCR analysis revealed that the levels of expression of the three genes Lus10003106, Lus10022077, and Lus10021999 differed between the y62–9 (pasmo-resistant) and y64–5 (pasmo-susceptible) parental flax lines after the inoculation of plants with the pasmo pathogen. Thus, these genes may play key roles in the resistance of flax to pasmo. The results of this study provide a foundation to support future studies of the pathogenesis of flax disease and the discovery and cloning of resistance genes and development of new molecular markers toward the development of pasmo-resistant flax varieties.</p
Presentation_2_QTL Mapping of Fiber-Related Traits Based on a High-Density Genetic Map in Flax (Linum usitatissimum L.).ZIP
<p>A genetic map is an important and valuable tool for quantitative trait locus (QTL) mapping, marker-assisted selection (MAS)-based breeding, and reference-assisted chromosome assembly. In this study, 112 F<sub>2</sub> plants from a cross between Linum usitatissimum L. “DIANE” and “NY17” and parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) library construction. After preprocessing, 61.64 Gb of raw data containing 253.71 Mb paired-end reads, each 101 bp in length, were obtained. A total of 192,797 SLAFs were identified, of which 23,115 were polymorphic, with a polymorphism rate of 11.99%. Finally, 2,339 SLAFs were organized into a linkage map consisting of 15 linkage groups (LGs). The total length of the genetic map was 1483.25 centimorgans (cM) and the average distance between adjacent markers was 0.63 cM. Combined with flax chromosome-scale pseudomolecules, 12 QTLs associating with 6 flax fiber-related traits were mapped on the chromosomal scaffolds. This high-density genetic map of flax should serve as a foundation for flax fine QTL mapping, draft genome assembly, and MAS-guided breeding. Ultimately, the genomic regions identified in this research could potentially be valuable for improving flax fiber cultivars, as well as for identification of candidate genes involved in flax fiber formation processes.</p>Significance statement<p>A high-density genetic map of flax was constructed, and QTLs were identified on the sequence scaffolds to be interrelated with fiber-related traits. The results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for flax, but also provide a reference to help position sequence scaffolds on the physical map and assist in the process of assembling the flax genome sequence.</p
Table_2_QTL Mapping of Fiber-Related Traits Based on a High-Density Genetic Map in Flax (Linum usitatissimum L.).XLSX
<p>A genetic map is an important and valuable tool for quantitative trait locus (QTL) mapping, marker-assisted selection (MAS)-based breeding, and reference-assisted chromosome assembly. In this study, 112 F<sub>2</sub> plants from a cross between Linum usitatissimum L. “DIANE” and “NY17” and parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) library construction. After preprocessing, 61.64 Gb of raw data containing 253.71 Mb paired-end reads, each 101 bp in length, were obtained. A total of 192,797 SLAFs were identified, of which 23,115 were polymorphic, with a polymorphism rate of 11.99%. Finally, 2,339 SLAFs were organized into a linkage map consisting of 15 linkage groups (LGs). The total length of the genetic map was 1483.25 centimorgans (cM) and the average distance between adjacent markers was 0.63 cM. Combined with flax chromosome-scale pseudomolecules, 12 QTLs associating with 6 flax fiber-related traits were mapped on the chromosomal scaffolds. This high-density genetic map of flax should serve as a foundation for flax fine QTL mapping, draft genome assembly, and MAS-guided breeding. Ultimately, the genomic regions identified in this research could potentially be valuable for improving flax fiber cultivars, as well as for identification of candidate genes involved in flax fiber formation processes.</p>Significance statement<p>A high-density genetic map of flax was constructed, and QTLs were identified on the sequence scaffolds to be interrelated with fiber-related traits. The results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for flax, but also provide a reference to help position sequence scaffolds on the physical map and assist in the process of assembling the flax genome sequence.</p
Presentation_1_QTL Mapping of Fiber-Related Traits Based on a High-Density Genetic Map in Flax (Linum usitatissimum L.).ZIP
<p>A genetic map is an important and valuable tool for quantitative trait locus (QTL) mapping, marker-assisted selection (MAS)-based breeding, and reference-assisted chromosome assembly. In this study, 112 F<sub>2</sub> plants from a cross between Linum usitatissimum L. “DIANE” and “NY17” and parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) library construction. After preprocessing, 61.64 Gb of raw data containing 253.71 Mb paired-end reads, each 101 bp in length, were obtained. A total of 192,797 SLAFs were identified, of which 23,115 were polymorphic, with a polymorphism rate of 11.99%. Finally, 2,339 SLAFs were organized into a linkage map consisting of 15 linkage groups (LGs). The total length of the genetic map was 1483.25 centimorgans (cM) and the average distance between adjacent markers was 0.63 cM. Combined with flax chromosome-scale pseudomolecules, 12 QTLs associating with 6 flax fiber-related traits were mapped on the chromosomal scaffolds. This high-density genetic map of flax should serve as a foundation for flax fine QTL mapping, draft genome assembly, and MAS-guided breeding. Ultimately, the genomic regions identified in this research could potentially be valuable for improving flax fiber cultivars, as well as for identification of candidate genes involved in flax fiber formation processes.</p>Significance statement<p>A high-density genetic map of flax was constructed, and QTLs were identified on the sequence scaffolds to be interrelated with fiber-related traits. The results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for flax, but also provide a reference to help position sequence scaffolds on the physical map and assist in the process of assembling the flax genome sequence.</p
Table_1_QTL Mapping of Fiber-Related Traits Based on a High-Density Genetic Map in Flax (Linum usitatissimum L.).XLSX
<p>A genetic map is an important and valuable tool for quantitative trait locus (QTL) mapping, marker-assisted selection (MAS)-based breeding, and reference-assisted chromosome assembly. In this study, 112 F<sub>2</sub> plants from a cross between Linum usitatissimum L. “DIANE” and “NY17” and parent plants were subjected to high-throughput sequencing and specific-locus amplified fragment (SLAF) library construction. After preprocessing, 61.64 Gb of raw data containing 253.71 Mb paired-end reads, each 101 bp in length, were obtained. A total of 192,797 SLAFs were identified, of which 23,115 were polymorphic, with a polymorphism rate of 11.99%. Finally, 2,339 SLAFs were organized into a linkage map consisting of 15 linkage groups (LGs). The total length of the genetic map was 1483.25 centimorgans (cM) and the average distance between adjacent markers was 0.63 cM. Combined with flax chromosome-scale pseudomolecules, 12 QTLs associating with 6 flax fiber-related traits were mapped on the chromosomal scaffolds. This high-density genetic map of flax should serve as a foundation for flax fine QTL mapping, draft genome assembly, and MAS-guided breeding. Ultimately, the genomic regions identified in this research could potentially be valuable for improving flax fiber cultivars, as well as for identification of candidate genes involved in flax fiber formation processes.</p>Significance statement<p>A high-density genetic map of flax was constructed, and QTLs were identified on the sequence scaffolds to be interrelated with fiber-related traits. The results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for flax, but also provide a reference to help position sequence scaffolds on the physical map and assist in the process of assembling the flax genome sequence.</p