99 research outputs found

    Selected Properties of Wood Strand and Oriented Strandboard From Small-Diameter Southern Pine Trees

    Get PDF
    Thermal and mechanical properties of southern pine and willow strands and properties of southern pine oriented strandboard (OSB) from small-diameter logs were investigated in this study. The effects of density and species group on tensile strength, dynamic moduli, and thermal stability of wood strands, and of strand quality (i.e., wood fines) on three-layer OSB properties were analyzed.Strand tensile strength and dynamic storage moduli (E') increased with the increase of strand density. A large variation in both tensile strength and E' values was observed for southern pine, while willow strands showed much smaller variability. The dynamic moduli (E") of strands decreased with increase of temperature in the range of 25° to 200°C. Small loss modulus (E") peaks were observed over the temperature range studied. The strands with higher densities had higher E". Thermogravimetric analysis results revealed that high-density strands were thermally more stable than low-density strands.Three-layer OSB made of small-diameter southern pine trees showed satisfactory strength and dimensional stability properties. As the fines loading levels increased, linear expansion (LE) along the parallel direction decreased, while the LE value along the perpendicular direction and thickness swelling increased. With increased fines levels, the internal bond strength showed an increasing trend up to the 20% fines level, and bending strength and modulus varied little in the parallel direction and slightly decreased in the perpendicular direction

    Electronic and Magnetic Properties of Endohedrally Doped Fullerene Mn@C60: A Total Energy Study

    Get PDF
    We perform total energy calculations on a manganese atom encapsulated inside a C60 cage using density functional theory with the generalized gradient approximation through three optimization schemes and along four paths inside the cage. We find that when Mn is located in the central region, its electronic and magnetic properties are not exactly the same as those of a free Mn atom due to weak coupling between Mn and the cage. As Mn is shifted toward to the edge, the total energy and spin start to change significantly when Mn is situated about one-third of the way between the cage center and edge, and the total energy reaches a local minimum. Finally the interaction between Mn and the cage turns repulsive as Mn approaches the edge. We also find that, along the lowest energy path, there exist three consecutive local energy minima and each of these has a different spin M. The ground state has the lowest M=3, Mn is located about 1.6 Å away from the cage center, and the binding energy is 0.08 eV. We attribute the decrease in total energy and spin to Mn and C hybridization

    NADPH oxidase mediates oxidative stress and ventricular remodeling through SIRT3/FOXO3a pathway in diabetic mice

    Get PDF
    Oxidative stress and mitochondrial dysfunction are important mechanisms of ventricular remodeling, predisposed to the development of diabetic cardiomyopathy (DCM) in type 2 diabetes mellitus. In this study, we have successfully established a model of type 2 diabetes using a high-fat diet (HFD) in combination with streptozotocin (STZ). The mice were divided into three groups of six at random: control, diabetes, and diabetes with apocynin and the H9c2 cell line was used as an in vitro model for investigation. We examined the molecular mechanisms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation on mitochondrial dysfunction and ventricular remodeling in the diabetic mouse model. Hyperglycemia-induced oxidative stress led to a reduced expression of sirtuin 3 (SIRT3), thereby promoting forkhead box class O 3a (FOXO3a) acetylation in ventricular tissue and H9c2 cells. Reactive oxygen species (ROS) overproduction promoted ventricular structural modeling and conduction defects. These alterations were mitigated by inhibiting NADPH oxidase with the pharmaceutical drug apocynin (APO). Apocynin improved SIRT3 and Mn-SOD expression in H9c2 cells transfected with SIRT3 siRNA. In our diabetic mouse model, apocynin improved myocardial mitochondrial function and ROS overproduction through the recovery of the SIRT3/FOXO3a pathway, thereby reducing ventricular remodeling and the incidence of DCM

    The flavor-changing rare top decays tcVVt\to c V V in topcolor-assisted technicolor theory

    Full text link
    In the framework of topcolor-assisted technicolor (TC2) theory, we calculate the contributions of the scalars(the neutral top-pion πt0\pi_{t}^{0} and the top-Higgs ht0h_{t}^{0}) to the flavor-changing rare top decays tcVVt\to c V V(V= W, g, γ\gamma or Z). Our results show that ht0h_{t}^{0} can enhance the standard model BrSM(tcWW)B_{r}^{SM}(t\longrightarrow cWW) by several orders of magnitude for most of the parameter space. The peak of the branching ratio resonance emerges when the top-Higgs mass is between 2mW2m_{W} and mtm_{t}. The branching ratio Br(tcWW) B_{r}(t\to c W W) can reach 103 10^{-3} in the narrow range.Comment: Latex file, 11pages, 2 eps figure

    Electronic and magnetic properties of endohedrally doped fullerene Mn@C60: A total energy study

    Get PDF
    We perform total energy calculations on a manganese atom encapsulated inside a C(60) cage using density functional theory with the generalized gradient approximation through three optimization schemes and along four paths inside the cage. We find that when Mn is located in the central region, its electronic and magnetic properties are not exactly the same as those of a free Mn atom due to weak coupling between Mn and the cage. As Mn is shifted toward to the edge, the total energy and spin start to change significantly when Mn is situated about one-third of the way between the cage center and edge, and the total energy reaches a local minimum. Finally the interaction between Mn and the cage turns repulsive as Mn approaches the edge. We also find that, along the lowest energy path, there exist three consecutive local energy minima and each of these has a different spin M. The ground state has the lowest M=3, Mn is located about 1.6 angstrom away from the cage center, and the binding energy is 0.08 eV. We attribute the decrease in total energy and spin to Mn and C hybridization. (C) 2008 American Institute of Physics.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000253336800015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Physics, Atomic, Molecular & ChemicalSCI(E)EI13ARTICLE7null12

    Loop effects and non-decoupling property of SUSY QCD in gbtHg b\to tH^{-}

    Get PDF
    One-loop SUSY QCD radiative correction to gbtHgb \to tH^{-} cross section is calculated in the Minimal Supersymmetric Standard Model. We found that SUSY QCD is non-decoupling if the gluino mass and the parameter μ\mu, AtA_t or AbA_b are at the same order and get large. The non-decoupling contribution can be enhanced by large tanβ\tan\beta and therefore large corrections to the hadronic production rates at the Tevatron and LHC are expected in the large tanβ\tan\beta limit. The fundamental reason for such non-decoupling behavior is found to be some couplings in the loops being proportional to SUSY mass parameters.Comment: 15 pages, 5 PS figures. A proof of non-decouplings of SUSY-QCD, Comments on corresponding QCD correction and references adde

    Cardiac arrhythmias in patients with COVID-19.

    Get PDF
    The emergence of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major global public health concern. Although SARS-CoV-2 causes primarily respiratory problems, concurrent cardiac injury cannot be ignored since it may be an independent predictor for adverse outcomes. Cardiac arrhythmias are often observed in patients with COVID-19, especially in severe cases, and more likely contribute to the high risk of adverse outcomes. Arrhythmias should be regarded as one of the main complications of COVID-19. Mechanistically, a number of ion channels can be adversely affected in COVID-19, leading to alterations in cardiac conduction and/or repolarization properties, as well as calcium handling, which can predispose to cardiac arrhythmogenesis. In addition, several antimicrobials that are currently used as potential therapeutic agents for COVID-19, such as chloroquine, hydroxychloroquine and azithromycin, have uncertain benefit, and yet may induce electrocardiographic QT prolongation with potential ventricular pro-arrhythmic effects. Continuous electrocardiogram monitoring, accurate and prompt recognition of arrhythmias are important. The present review focuses on cardiac arrhythmias in patients with COVID-19, its underlying mechanisms, and proposed preventive and therapeutic strategies

    MiR-4319 Suppress the Malignancy of Triple-Negative Breast Cancer by Regulating Self-Renewal and Tumorigenesis of Stem Cells

    Get PDF
    Background/Aims: High levels of cancer stem cells (CSCs) in patients with triple-negative breast cancer (TNBC) correlate with risk of poor clinical outcome and possibly contribute to chemoresistance and metastasis in patients with highly malignant TNBC. Aberrant microRNA expression is associated with the dysfunction of self-renewal and proliferation in cancer stem cells, while there is little information about the TNBC-specific microRNAs in regulating CSC ability. Methods: Solexa deep sequencing was performed to detect the expression levels of TNBC or non-TNBC stem cells (CSCs) microRNAs. Mammosphere formation assay, qRT-PCR and the xenograft model in nude mice were performed. Bioinformatic analysis and microarray were used to select the target gene, and luciferase reporter assays were used to confirm the binding sites. Results: Solexa sequencing data exhibited differential expression of 193 microRNAs between TNBC and non-TNBC stem cells. The gene ontology analysis and pathways analyses showed that genes were involved in the maintenance of stemness. MiR-4319 could suppress the self-renewal and formation of tumorspheres in TNBC CSCs through E2F2, and also inhibited tumor initiation and metastasis in vivo. Moreover, increased E2F2 could reverse the effect of miR-4319 on the self-renewal in TNBC CSCs. Conclusions: MiR-4319 suppresses the malignancy of TNBC by regulating self-renewal and tumorigenesis of stem cells and might be a remarkable prognostic factor or therapeutic target for patients with TNBC

    Study on the evaluation of the clinical effects of traditional chinese medicine in heart failure by complex intervention: protocol of SECETCM-HF

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experts in Traditional Chinese Medicine (TCM) have studied the TCM subject of the pathogenesis of heart failure (HF) for several decades. As a result, the general idea is <it>ben </it>deficiency and <it>biao </it>excess. However, the clinical evaluation system which combined the TCM and western medicine in HF has not been developed yet. The objective is to establish the evaluation index system for the integration of TCM and western medicine. The evaluation indexes which include TCM items will specify the research design and methods.</p> <p>Methods</p> <p>Nine medical centers in different cities in China will participate in the trial. A population of 340 patients with HF will be enrolled through a central randomized system for different test groups. Group A will be treated with only western medicine, while group B with western and Chinese medicine together. The study will last for 12 months from the date of enrollment. The cardiovascular death will be the primary outcome.</p> <p>Discussion</p> <p>By putting the protocol into practice, the clinical effects of TCM for HF will be identified scientifically, objectively as well as rationally. The proper index system which built in the study will be helpful for the clinical effect expression of HF by integrated medicine in future.</p> <p>Trial Registration</p> <p>ChiCTR-TRC-00000059</p
    corecore