60 research outputs found

    Development of Elite BPH-Resistant Wide-Spectrum Restorer Lines for Three and Two Line Hybrid Rice

    Get PDF
    Hybrid rice has contributed significantly to the world food security. Breeding of elite high-yield, strong-resistant broad-spectrum restorer line is an important strategy for hybrid rice in commercial breeding programs. Here, we developed three elite brown planthopper (BPH)-resistant wide-spectrum restorer lines by pyramiding big-panicle gene Gn8.1, BPH-resistant genes Bph6 and Bph9, fertility restorer genes Rf3, Rf4, Rf5, and Rf6 through molecular marker assisted selection. Resistance analysis revealed that the newly developed restorer lines showed stronger BPH-resistance than any of the single-gene donor parent Luoyang-6 and Luoyang-9. Moreover, the three new restorer lines had broad spectrum recovery capabilities for Honglian CMS, Wild abortive CMS and two-line GMS sterile lines, and higher grain yields than that of the recurrent parent 9,311 under nature field conditions. Importantly, the hybrid crosses also showed good performance for grain yield and BPH-resistance. Thus, the development of elite BPH-resistant wide-spectrum restorer lines has a promising future for breeding of broad spectrum BPH-resistant high-yield varieties

    Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect Nilaparvata lugens

    Get PDF
    BACKGROUND: RNA interference (RNAi) is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. METHODOLOGY/PRINCIPAL FINDINGS: The Hemipteran insect brown planthopper (Nilaparvata lugens StΓ₯l) is a typical phloem sap feeder specific to rice (Oryza sativa L.). To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub) encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry) that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. CONCLUSIONS: Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub) are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants

    Differential gene expression in response to brown planthopper feeding in rice.

    No full text
    Summary Plant responses to herbivores are complex. 108 cDNA clones representing genes relating to plant responses to chewing insect-feeding, pathogen infection, wounding and other stresses were collected. Northern blot and cDNA array analysis were employed to investigate gene expression regulated by piercing-sucking insect, brown planthopper (BPH), Nilaparvata lugens (Homoptera: Dephacidae) on both the resistant and susceptible rice genotypes. After BPH feeding in rice for 72 h, the expression of most tested genes was affected. 14 genes in resistant rice variety B5 and 44 genes in susceptible MH63 were significantly up-or down-regulated. Most of the well-regulated genes were grouped in the categories of signaling pathways, oxidative stress/apoptosis, wound-response, drought-inducible and pathogen-related proteins. Those related to the flavonoid pathway, aromatic metabolidsm and the octadecanoid pathway were mostly kept unchanged or down-regulated. Our results indicate that BPH feeding induces plant responses which would take part in a jasmonic acidindependent pathway and crosstalk with those related to abiotic stress, pathogen invasion and phytohormone signaling pathways

    Rice Genomics Research, Gene Mining and Utilization: A Themed Issue Dedicated to Academician/Prof. Yingguo Zhu

    No full text
    We are honored and privileged to edit this Special Issue, β€œRice Genomics Research, Gene Mining and Utilization: A Themed Issue Dedicated to Academician Yingguo Zhu” [...

    Ecofriendly Ultrasonic Rust Removal: An Empirical Optimization Based on Response Surface Methodology

    No full text
    This study shows that the hard-to-remove rust layer on the guide sleeve surface of a used cylinder can be removed using a specially developed, environmentally friendly formula for cleaning rust. Furthermore, we studied the rust removal technology that is based on ultrasonic cavitation and chemical etching. The surface morphology and structural components of the rust layer were observed using an electron microscope and an X-ray powder diffractometer. These tools were used to explore the mechanism of combined rust removal. Using response surface methodology (RSM) and central composite design (CCD), with the rust removal rate as our index of evaluation, data were analyzed to establish a response surface model that can determine the effect of cleaning temperature and ultrasonic power interaction on the rate of rust removal. Results showed that the main components of the rust layer on a 45 steel guide sleeve were Ξ±-FeOOH, Ξ³-FeOOH, and Fe3O4. The rust was unevenly distributed with a loose structure, which was easily corroded by chemical reagents and peeled off under ultrasonic cavitation. With the increase in the cleaning temperature, the chemical reaction effect was intensified, and the cleaning ability was enhanced. With the increase in ultrasonic power, the cavitation effect was aggravated, the ultrasonic agitation was enhanced, and the rust removal rate was improved. According to response surface analysis and the application scope of the rust remover, we determined that the optimal cleaning temperature is 55 Β°C, and that the optimal ultrasonic power is 2880 W. The descaling rate under these parameters is 0.15 gΒ·minβˆ’1Β·mβˆ’2

    Bacterial Symbionts of the Brown Planthopper, Nilaparvata lugens (Homoptera: Delphacidae) β–Ώ †

    No full text
    The brown planthopper (Nilaparvata lugens StΓ₯l), the most destructive pest of rice, has been identified, including biotypes with high virulence towards previously resistant rice varieties. There have also been many reports of a yeast-like symbiont of N. lugens, but little is known about the bacterial microbes. In this study, we examined the bacterial microbes in N. lugens and identified a total of 18 operational taxonomic units (OTUs) representing four phyla (Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes) by sequencing and analyzing 16S rRNA gene libraries obtained from three populations of N. lugens, which were maintained on the rice varieties TN1, Mudgo, and ASD7. Several of the OTUs were similar to previously reported secondary symbionts of other insects, including an endosymbiont of the psyllid Glycapsis brimblecombei, an Asaia sp. found in the mosquito Anopheles stephensi, and Wolbachia, found in the mite Metaseiulus occidentalis. However, the species and numbers of the detected OTUs differed substantially among the N. lugens populations. Further, in situ hybridization analysis using digoxigenin-labeled probes indicated that OTU 1 was located in hypogastrium tissues near the ovipositor and ovary in biotype 1 insects, while OTU 2 was located in the front of the ovipositor sheath in biotype 2 insects. In addition, masses of bacterium-like organisms were observed in the tubes of salivary sheaths in rice plant tissues that the insects had fed upon. The results provide indications of the diversity of the bacterial microbes harbored by the brown planthopper and of possible associations between specific bacterial microbes and biotypes of N. lugens

    Quantifying microbial ecophysiological effects on the carbon fluxes of forest ecosystems over the conterminous United States models should explicitly consider the microbial ecophysiological effects on soil carbon decomposition to adequately quantify fores

    No full text
    Abstract There is a pressing need to develop earth system models (ESMs), in which ecosystem processes are adequately represented, to quantify carbon-climate feedbacks. In particular, explicit representation of the effects of microbial activities on soil organic carbon decomposition has been slow in ESM development. Here we revised an existing Q 10 -based heterotrophic respiration (R H ) algorithm of a large-scale biogeochemical model, the Terrestrial Ecosystem Model (TEM), by incorporating the algorithms of Dual Arrhenius and MichaelisMenten kinetics and microbial-enzyme interactions. The microbial physiology enabled model (MIC-TEM) was then applied to quantify historical and future carbon dynamics of forest ecosystems in the conterminous United States. Simulations indicate that warming has a weaker positive effect on R H than that traditional Q 10 model has. Our results demonstrate that MIC-TEM is superior to traditional TEM in reproducing historical carbon dynamics. More importantly, the future trend of soil carbon accumulation simulated with MIC-TEM is more reasonable than TEM did and is generally consistent with soil warming experimental studies. The revised model estimates that regional GPP is 2.48 Pg C year βˆ’1 (2.02 to 3.03 Pg C yea
    • …
    corecore