14,074 research outputs found
A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme
A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well
Magnetic Phase Transitions in One-dimensional Strongly Attractive Three-Component Ultracold Fermions
We investigate the nature of trions, pairing and quantum phase transitions in
one-dimensional strongly attractive three-component ultracold fermions in
external fields. Exact results for the groundstate energy, critical fields,
magnetization and phase diagrams are obtained analytically from the Bethe
ansatz solutions. Driven by Zeeman splitting, the system shows exotic phases of
trions, bound pairs, a normal Fermi liquid and four mixtures of these states.
Particularly, a smooth phase transition from a trionic phase into a pairing
phase occurs as the highest hyperfine level separates from the two lower energy
levels. In contrast, there is a smooth phase transition from the trionic phase
into a normal Fermi liquid as the lowest level separates from the two higher
levels.Comment: 4 pages, 3 figures, minor revisions to text, replacement figure, refs
added and update
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
Generation of repetitive sequence-depleted microdissected chromosome arm painting probe
Program no. 897postprin
Universal local pair correlations of Lieb-Liniger bosons at quantum criticality
The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system
featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion
quantum criticality. We analytically calculate finite temperature local pair
correlations for the strong coupling Bose gas at quantum criticality using the
polylog function in the framework of the Yang-Yang thermodynamic equations. We
show that the local pair correlation has the universal value in the quantum critical regime, the TLL phase and the
quasi-classical region, where is the pressure per unit length rescaled by
the interaction energy with interaction
strength and linear density . This suggests the possibility to test
finite temperature local pair correlations for the TLL in the relativistic
dispersion regime and to probe quantum criticality with the local correlations
beyond the TLL phase. Furthermore, thermodynamic properties at high
temperatures are obtained by both high temperature and virial expansion of the
Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference
The one-dimensional Hubbard model with open ends: Universal divergent contributions to the magnetic susceptibility
The magnetic susceptibility of the one-dimensional Hubbard model with open
boundary conditions at arbitrary filling is obtained from field theory at low
temperatures and small magnetic fields, including leading and next-leading
orders. Logarithmic contributions to the bulk part are identified as well as
algebraic-logarithmic divergences in the boundary contribution. As a
manifestation of spin-charge separation, the result for the boundary part at
low energies turns out to be independent of filling and interaction strength
and identical to the result for the Heisenberg model. For the bulk part at zero
temperature, the scale in the logarithms is determined exactly from the Bethe
ansatz. At finite temperature, the susceptibility profile as well as the
Friedel oscillations in the magnetisation are obtained numerically from the
density-matrix renormalisation group applied to transfer matrices. Agreement is
found with an exact asymptotic expansion of the relevant correlation function.Comment: 30 pages, 8 figures, reference adde
- …