1,394 research outputs found
Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity
Dynamical Chern-Simons (DCS) modified gravity is an attractive, yet
relatively unexplored, candidate to an alternative theory of gravity. The DCS
correction couples a dynamical scalar field to the gravitational field. In this
framework, we analyze the perturbation formalism and stability properties of
spherically symmetric black holes. Assuming that no background scalar field is
present, gravitational perturbations with polar and axial parities decouple. We
find no effect of the Chern-Simons coupling on the polar sector, while axial
perturbations couple to the Chern-Simons scalar field. The axial sector can
develop strong instabilities if the coupling parameter beta, associated to the
dynamical coupling of the scalar field, is small enough; this yields a
constraint on beta which is much stronger than the constraints previously known
in the literature.Comment: 9 pages, 1 figure. Minor changes to match version accepted by Phys.
Rev.
A new approach to the study of quasi-normal modes of rotating stars
We propose a new method to study the quasi-normal modes of rotating
relativistic stars. Oscillations are treated as perturbations in the frequency
domain of the stationary, axisymmetric background describing a rotating star.
The perturbed quantities are expanded in circular harmonics, and the resulting
2D-equations they satisfy are integrated using spectral methods in the
(r,theta)-plane. The asymptotic conditions at infinity, needed to find the mode
frequencies, are implemented by generalizing the standing wave boundary
condition commonly used in the non rotating case. As a test, the method is
applied to find the quasi-normal mode frequencies of a slowly rotating star.Comment: 24 pages, 7 figures, submitted to Phys. Rev.
Gravitational waves from neutron stars described by modern EOS
The frequencies and damping times of neutron star (and quark star)
oscillations have been computed using the most recent equations of state
available in the literature. We find that some of the empirical relations that
connect the frequencies and damping times of the modes to the mass and radius
of the star, and that were previously derived in the literature need to be
modified.Comment: 3 pages, 1+1 figures, to appear in the Proceedings of "XVI SIGRAV
Conference", Vietri sul Mare (Italy), 13-16 September 200
Unstable g-modes in Proto-Neutron Stars
In this article we study the possibility that, due to non-linear couplings,
unstable g-modes associated to convective motions excite stable oscillating
g-modes. This problem is of particular interest, since gravitational waves
emitted by a newly born proto-neutron star pulsating in its stable g-modes
would be in the bandwidth of VIRGO and LIGO. Our results indicate that
nonlinear saturation of unstable modes occurs at relatively low amplitudes, and
therefore, even if there exists a coupling between stable and unstable modes,
it does not seem to be sufficiently effective to explain, alone, the excitation
of the oscillating g-modes found in hydrodynamical simulations.Comment: 10 pages, 3 figures, to appear on Class. Quant. Gra
On the validity of the adiabatic approximation in compact binary inspirals
Using a semi-analytical approach recently developed to model the tidal
deformations of neutron stars in inspiralling compact binaries, we study the
dynamical evolution of the tidal tensor, which we explicitly derive at second
post-Newtonian order, and of the quadrupole tensor. Since we do not assume a
priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the
so called "adiabatic approximation", our approach enables us to establish to
which extent such approximation is reliable. We find that the ratio between the
quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral
progresses, but this phenomenon only marginally affects the emitted
gravitational waveform. We estimate the frequency range in which the tidal
component of the gravitational signal is well described using the stationary
phase approximation at next-to-leading post-Newtonian order, comparing
different contributions to the tidal phase. We also derive a semi-analytical
expression for the Love number, which reproduces within a few percentage points
the results obtained so far by numerical integrations of the relativistic
equations of stellar perturbations.Comment: 13 pages, 1 table, 2 figures. Minor changes to match the version
appearing on Phys. Rev.
Relativistic r-modes and shear viscosity
We derive the relativistic equations for stellar perturbations, including in
a consistent way shear viscosity in the stress-energy tensor, and we
numerically integrate our equations in the case of large viscosity. We consider
the slow rotation approximation, and we neglect the coupling between polar and
axial perturbations. In our approach, the frequency and damping time of the
emitted gravitational radiation are directly obtained. We find that,
approaching the inviscid limit from the finite viscosity case, the continuous
spectrum is regularized. Constant density stars, polytropic stars, and stars
with realistic equations of state are considered. In the case of constant
density stars and polytropic stars, our results for the viscous damping times
agree, within a factor two, with the usual estimates obtained by using the
eigenfunctions of the inviscid limit. For realistic neutron stars, our
numerical results give viscous damping times with the same dependence on mass
and radius as previously estimated, but systematically larger of about 60%.Comment: 8 pages, 7 figures, to appear in the Proceedings of the Albert
Einstein Century International Conference, Paris, France, July 200
Quasi-normal modes of superfluid neutron stars
We study non-radial oscillations of neutron stars with superfluid baryons, in
a general relativistic framework, including finite temperature effects. Using a
perturbative approach, we derive the equations describing stellar oscillations,
which we solve by numerical integration, employing different models of nucleon
superfluidity, and determining frequencies and gravitational damping times of
the quasi-normal modes. As expected by previous results, we find two classes of
modes, associated to superfluid and non-superfluid degrees of freedom,
respectively. We study the temperature dependence of the modes, finding that at
specific values of the temperature, the frequencies of the two classes of
quasi-normal modes show avoided crossings, and their damping times become
comparable. We also show that, when the temperature is not close to the avoided
crossings, the frequencies of the modes can be accurately computed by
neglecting the coupling between normal and superfluid degrees of freedom. Our
results have potential implications on the gravitational wave emission from
neutron stars.Comment: 16 pages, 7 figures, 2 table
Dissipation in relativistic superfluid neutron stars
We analyze damping of oscillations of general relativistic superfluid neutron
stars. To this aim we extend the method of decoupling of superfluid and normal
oscillation modes first suggested in [Gusakov & Kantor PRD 83, 081304(R)
(2011)]. All calculations are made self-consistently within the finite
temperature superfluid hydrodynamics. The general analytic formulas are derived
for damping times due to the shear and bulk viscosities. These formulas
describe both normal and superfluid neutron stars and are valid for oscillation
modes of arbitrary multipolarity. We show that: (i) use of the ordinary
one-fluid hydrodynamics is a good approximation, for most of the stellar
temperatures, if one is interested in calculation of the damping times of
normal f-modes; (ii) for radial and p-modes such an approximation is poor;
(iii) the temperature dependence of damping times undergoes a set of rapid
changes associated with resonance coupling of neighboring oscillation modes.
The latter effect can substantially accelerate viscous damping of normal modes
in certain stages of neutron-star thermal evolution.Comment: 25 pages, 9 figures, 1 table, accepted for publication in MNRA
Non-radial oscillation modes as a probe of density discontinuities in neutron stars
A phase transition occurring in the inner core of a neutron star could be
associated to a density discontinuity that would affect the frequency spectrum
of the non-radial oscillation modes in two ways. Firstly, it would produce a
softening of the equation of state, leading to more compact equilibrium
configurations and changing the frequency of the fundamental and pressure modes
of the neutron star. Secondly, a new non-zero frequency g-- mode would appear,
associated to each discontinuity. These discontinuity g--modes have typical
frequencies larger than those of g--modes previously studied in the literature
(thermal, core g-- modes, or g--modes due to chemical inhomogeneities in the
outer layers), and smaller than that of the fundamental mode; therefore they
should be distinguishable from the other modes of non radial oscillation. In
this paper we investigate how high density discontinuities change the frequency
spectrum of the non-radial oscillations, in the framework of the general
relativistic theory of stellar perturbations. Our purpose is to understand
whether a gravitational signal, emitted at the frequencies of the quasi normal
modes, may give some clear information on the equation of state of the neutron
star and, in particular, on the parameters that characterize the density
discontinuity. We discuss some astrophysical processes that may be associated
to the excitation of these modes, and estimate how much gravitational energy
should the modes convey to produce a signal detectable by high frequency
gravitational detectors.Comment: submitted to MNRA
Gravitational Waves from Rotating Proto-Neutron Stars
We study the effects of rotation on the quasi normal modes (QNMs) of a newly
born proto neutron star (PNS) at different evolutionary stages, until it
becomes a cold neutron star (NS). We use the
Cowling approximation, neglecting spacetime perturbations, and consider
different models of evolving PNS. The frequencies of the modes of a PNS are
considerably lower than those of a cold NS, and are further lowered by
rotation; consequently, if QNMs were excited in a sufficiently energetic
process, they would radiate waves that could be more easily detectable by
resonant-mass and interferometric detectors than those emitted by a cold NS. We
find that for high rotation rates, some of the g-modes become unstable via the
CFS instability; however, this instability is likely to be suppressed by
competing mechanisms before emitting a significant amount of gravitational
waves.Comment: 5 pages, proceedings of the 5th Edoardo Amaldi Conference On
Gravitational Wave
- âŠ