1,394 research outputs found

    Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity

    Full text link
    Dynamical Chern-Simons (DCS) modified gravity is an attractive, yet relatively unexplored, candidate to an alternative theory of gravity. The DCS correction couples a dynamical scalar field to the gravitational field. In this framework, we analyze the perturbation formalism and stability properties of spherically symmetric black holes. Assuming that no background scalar field is present, gravitational perturbations with polar and axial parities decouple. We find no effect of the Chern-Simons coupling on the polar sector, while axial perturbations couple to the Chern-Simons scalar field. The axial sector can develop strong instabilities if the coupling parameter beta, associated to the dynamical coupling of the scalar field, is small enough; this yields a constraint on beta which is much stronger than the constraints previously known in the literature.Comment: 9 pages, 1 figure. Minor changes to match version accepted by Phys. Rev.

    A new approach to the study of quasi-normal modes of rotating stars

    Full text link
    We propose a new method to study the quasi-normal modes of rotating relativistic stars. Oscillations are treated as perturbations in the frequency domain of the stationary, axisymmetric background describing a rotating star. The perturbed quantities are expanded in circular harmonics, and the resulting 2D-equations they satisfy are integrated using spectral methods in the (r,theta)-plane. The asymptotic conditions at infinity, needed to find the mode frequencies, are implemented by generalizing the standing wave boundary condition commonly used in the non rotating case. As a test, the method is applied to find the quasi-normal mode frequencies of a slowly rotating star.Comment: 24 pages, 7 figures, submitted to Phys. Rev.

    Gravitational waves from neutron stars described by modern EOS

    Full text link
    The frequencies and damping times of neutron star (and quark star) oscillations have been computed using the most recent equations of state available in the literature. We find that some of the empirical relations that connect the frequencies and damping times of the modes to the mass and radius of the star, and that were previously derived in the literature need to be modified.Comment: 3 pages, 1+1 figures, to appear in the Proceedings of "XVI SIGRAV Conference", Vietri sul Mare (Italy), 13-16 September 200

    Unstable g-modes in Proto-Neutron Stars

    Full text link
    In this article we study the possibility that, due to non-linear couplings, unstable g-modes associated to convective motions excite stable oscillating g-modes. This problem is of particular interest, since gravitational waves emitted by a newly born proto-neutron star pulsating in its stable g-modes would be in the bandwidth of VIRGO and LIGO. Our results indicate that nonlinear saturation of unstable modes occurs at relatively low amplitudes, and therefore, even if there exists a coupling between stable and unstable modes, it does not seem to be sufficiently effective to explain, alone, the excitation of the oscillating g-modes found in hydrodynamical simulations.Comment: 10 pages, 3 figures, to appear on Class. Quant. Gra

    On the validity of the adiabatic approximation in compact binary inspirals

    Full text link
    Using a semi-analytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the so called "adiabatic approximation", our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semi-analytical expression for the Love number, which reproduces within a few percentage points the results obtained so far by numerical integrations of the relativistic equations of stellar perturbations.Comment: 13 pages, 1 table, 2 figures. Minor changes to match the version appearing on Phys. Rev.

    Relativistic r-modes and shear viscosity

    Get PDF
    We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approximation, and we neglect the coupling between polar and axial perturbations. In our approach, the frequency and damping time of the emitted gravitational radiation are directly obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is regularized. Constant density stars, polytropic stars, and stars with realistic equations of state are considered. In the case of constant density stars and polytropic stars, our results for the viscous damping times agree, within a factor two, with the usual estimates obtained by using the eigenfunctions of the inviscid limit. For realistic neutron stars, our numerical results give viscous damping times with the same dependence on mass and radius as previously estimated, but systematically larger of about 60%.Comment: 8 pages, 7 figures, to appear in the Proceedings of the Albert Einstein Century International Conference, Paris, France, July 200

    Quasi-normal modes of superfluid neutron stars

    Full text link
    We study non-radial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasi-normal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasi-normal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.Comment: 16 pages, 7 figures, 2 table

    Dissipation in relativistic superfluid neutron stars

    Get PDF
    We analyze damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in [Gusakov & Kantor PRD 83, 081304(R) (2011)]. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that: (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f-modes; (ii) for radial and p-modes such an approximation is poor; (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighboring oscillation modes. The latter effect can substantially accelerate viscous damping of normal modes in certain stages of neutron-star thermal evolution.Comment: 25 pages, 9 figures, 1 table, accepted for publication in MNRA

    Non-radial oscillation modes as a probe of density discontinuities in neutron stars

    Get PDF
    A phase transition occurring in the inner core of a neutron star could be associated to a density discontinuity that would affect the frequency spectrum of the non-radial oscillation modes in two ways. Firstly, it would produce a softening of the equation of state, leading to more compact equilibrium configurations and changing the frequency of the fundamental and pressure modes of the neutron star. Secondly, a new non-zero frequency g-- mode would appear, associated to each discontinuity. These discontinuity g--modes have typical frequencies larger than those of g--modes previously studied in the literature (thermal, core g-- modes, or g--modes due to chemical inhomogeneities in the outer layers), and smaller than that of the fundamental mode; therefore they should be distinguishable from the other modes of non radial oscillation. In this paper we investigate how high density discontinuities change the frequency spectrum of the non-radial oscillations, in the framework of the general relativistic theory of stellar perturbations. Our purpose is to understand whether a gravitational signal, emitted at the frequencies of the quasi normal modes, may give some clear information on the equation of state of the neutron star and, in particular, on the parameters that characterize the density discontinuity. We discuss some astrophysical processes that may be associated to the excitation of these modes, and estimate how much gravitational energy should the modes convey to produce a signal detectable by high frequency gravitational detectors.Comment: submitted to MNRA

    Gravitational Waves from Rotating Proto-Neutron Stars

    Full text link
    We study the effects of rotation on the quasi normal modes (QNMs) of a newly born proto neutron star (PNS) at different evolutionary stages, until it becomes a cold neutron star (NS). We use the Cowling approximation, neglecting spacetime perturbations, and consider different models of evolving PNS. The frequencies of the modes of a PNS are considerably lower than those of a cold NS, and are further lowered by rotation; consequently, if QNMs were excited in a sufficiently energetic process, they would radiate waves that could be more easily detectable by resonant-mass and interferometric detectors than those emitted by a cold NS. We find that for high rotation rates, some of the g-modes become unstable via the CFS instability; however, this instability is likely to be suppressed by competing mechanisms before emitting a significant amount of gravitational waves.Comment: 5 pages, proceedings of the 5th Edoardo Amaldi Conference On Gravitational Wave
    • 

    corecore