41 research outputs found
Universal targets for homomorphisms of edge-colored graphs
A -edge-colored graph is a finite, simple graph with edges labeled by
numbers . A function from the vertex set of one -edge-colored
graph to another is a homomorphism if the endpoints of any edge are mapped to
two different vertices connected by an edge of the same color. Given a class
of graphs, a -edge-colored graph (not necessarily
with the underlying graph in ) is -universal for
when any -edge-colored graph with the underlying graph in
admits a homomorphism to . We characterize graph classes that admit
-universal graphs. For such classes, we establish asymptotically almost
tight bounds on the size of the smallest universal graph.
For a nonempty graph , the density of is the maximum ratio of the
number of edges to the number of vertices ranging over all nonempty subgraphs
of . For a nonempty class of graphs, denotes
the density of , that is the supremum of densities of graphs in
.
The main results are the following. The class admits
-universal graphs for if and only if there is an absolute constant
that bounds the acyclic chromatic number of any graph in . For any
such class, there exists a constant , such that for any , the size
of the smallest -universal graph is between and
.
A connection between the acyclic coloring and the existence of universal
graphs was first observed by Alon and Marshall (Journal of Algebraic
Combinatorics, 8(1):5-13, 1998). One of their results is that for planar
graphs, the size of the smallest -universal graph is between and
. Our results yield that there exists a constant such that for all
, this size is bounded from above by
On an extremal problem for poset dimension
Let be the largest integer such that every poset on elements has a
-dimensional subposet on elements. What is the asymptotics of ?
It is easy to see that . We improve the best known upper
bound and show . For higher dimensions, we show
, where is the largest
integer such that every poset on elements has a -dimensional subposet on
elements.Comment: removed proof of Theorem 3 duplicating previous work; fixed typos and
reference
Connecting the dots (with minimum crossings)
We study a prototype Crossing Minimization problem, defined as follows. Let F be an infinite family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in the Euclidean plane, a collection L subseteq Lines(P)={l: l is a line segment with both endpoints in P}, and a non-negative integer k, decide if there is a subcollection L'subseteq L such that the graph G=(P,L') is isomorphic to a graph in F and L' has at most k crossings. By G=(P,L'), we refer to the graph on vertex set P, where two vertices are adjacent if and only if there is a line segment that connects them in L'. Intuitively, in Crossing Minimization, we have a set of locations of interest, and we want to build/draw/exhibit connections between them (where L indicates where it is feasible to have these connections) so that we obtain a structure in F. Natural choices for F are the collections of perfect matchings, Hamiltonian paths, and graphs that contain an (s,t)-path (a path whose endpoints are labeled). While the objective of seeking a solution with few crossings is of interest from a theoretical point of view, it is also well motivated by a wide range of practical considerations. For example, links/roads (such as highways) may be cheaper to build and faster to traverse, and signals/moving objects would collide/interrupt each other less often. Further, graphs with fewer crossings are preferred for graphic user interfaces. As a starting point for a systematic study, we consider a special case of Crossing Minimization. Already for this case, we obtain NP-hardness and W[1]-hardness results, and ETH-based lower bounds. Specifically, suppose that the input also contains a collection D of d non-crossing line segments such that each point in P belongs to exactly one line in D, and L does not contain line segments between points on the same line in D. Clearly, Crossing Minimization is the case where d=n - then, P is in general position. The case of d=2 is of interest not only because it is the most restricted non-trivial case, but also since it corresponds to a class of graphs that has been well studied - specifically, it is Crossing Minimization where G=(P,L) is a (bipartite) graph with a so called two-layer drawing. For d=2, we consider three basic choices of F. For perfect matchings, we show (i) NP-hardness with an ETH-based lower bound, (ii) solvability in subexponential parameterized time, and (iii) existence of an O(k^2)-vertex kernel. Second, for Hamiltonian paths, we show (i) solvability in subexponential parameterized time, and (ii) existence of an O(k^2)-vertex kernel. Lastly, for graphs that contain an (s,t)-path, we show (i) NP-hardness and W[1]-hardness, and (ii) membership in XP
Sparse Graphs of Twin-width 2 Have Bounded Tree-width
Twin-width is a structural width parameter introduced by Bonnet, Kim,
Thomass\'e and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual
reduction (a contraction sequence) of the given graph down to a single vertex
while maintaining limited difference of neighbourhoods of the vertices, and it
can be seen as widely generalizing several other traditional structural
parameters. Having such a sequence at hand allows to solve many otherwise hard
problems efficiently. Our paper focuses on a comparison of twin-width to the
more traditional tree-width on sparse graphs. Namely, we prove that if a graph
of twin-width at most contains no subgraph for some integer
, then the tree-width of is bounded by a polynomial function of . As
a consequence, for any sparse graph class we obtain a polynomial
time algorithm which for any input graph either outputs a
contraction sequence of width at most (where depends only on
), or correctly outputs that has twin-width more than . On
the other hand, we present an easy example of a graph class of twin-width
with unbounded tree-width, showing that our result cannot be extended to higher
values of twin-width