108 research outputs found

    In Silico Survey of the Mitochondrial Protein Uptake and Maturation Systems in the Brown Alga Ectocarpus siliculosus

    Get PDF
    The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes

    Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes.</p> <p>Results</p> <p>The chloroplast genomes of two brown algae, <it>Ectocarpus siliculosus </it>and <it>Fucus vesiculosus</it>, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in <it>E. siliculosus</it>. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of <it>E. siliculosus </it>lacks an intron, in contrast to the <it>F. vesiculosus </it>and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist plastid genomes.</p> <p>Conclusion</p> <p>The phylogenetic studies using concatenated plastid proteins still do not resolve the question of the monophyly of all chromist plastids. However, these results support both the monophyly of heterokont plastids and that of cryptophyte and haptophyte plastids, in agreement with nuclear phylogenies.</p

    Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage

    Get PDF
    The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear-encoded plastid-localized proteins contain N-terminal bipartite targeting peptides with the conserved amino acid sequence motif ‘ASAFAP’. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear-encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved ‘ASAFAP’ motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid-localized proteins with both high sensitivity and high specificity. To identify nucleus-encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full-length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae

    Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism

    Get PDF
    Acknowledgments We would like to thank the Aberdeen Proteome Facility, especially Phil Cash, David Stead and Evelyn Argo for assistance with 2D electrophoresis and mass spectrometry. M.S. gratefully acknowledges a Marie Curie PhD fellowship from the European Commission (ECOSUMMER, MEST-CT-2005-20501), a joint FEMS/ESCMID Research Fellowship and the Genomia Fund. C.M.M.G. is supported by a Marie Curie postdoctoral fellowship (MEIF-CT-2006-022837), a Marie Curie Re-Integration Grant (PERG03-GA-2008-230865) and a New Investigator grant from the UK Natural Environment Research Council (NERC, grant NE/J00460X/1). F.C.K. would like to thank NERC for funding (grants NE/D521522/1, NE/F012705/1 and Oceans 2025 / WP 4.5). L.J.G.-B., C.M.M.G., F.C.K. and P.W. would like to acknowledge funding from NERC for a Strategic Ocean Funding Initiative award (NE/F012578/1). Funding from the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council and contributing institutions; grant reference HR09011) and from the TOTAL Foundation (Paris) to F.C.K. is gratefully acknowledged. Finally, we would like to thank the two anonymous referees for constructive suggestions to improve our manuscript.Peer reviewedPublisher PD

    The genomic basis of color pattern polymorphism in the Harlequin ladybird

    Get PDF
    © 2018 The Authors Many animal species comprise discrete phenotypic forms. A common example in natural populations of insects is the occurrence of different color patterns, which has motivated a rich body of ecological and genetic research [1–6]. The occurrence of dark, i.e., melanic, forms displaying discrete color patterns is found across multiple taxa, but the underlying genomic basis remains poorly characterized. In numerous ladybird species (Coccinellidae), the spatial arrangement of black and red patches on adult elytra varies wildly within species, forming strikingly different complex color patterns [7, 8]. In the harlequin ladybird, Harmonia axyridis, more than 200 distinct color forms have been described, which classic genetic studies suggest result from allelic variation at a single, unknown, locus [9, 10]. Here, we combined whole-genome sequencing, population-based genome-wide association studies, gene expression, and functional analyses to establish that the transcription factor Pannier controls melanic pattern polymorphism in H. axyridis. We show that pannier is necessary for the formation of melanic elements on the elytra. Allelic variation in pannier leads to protein expression in distinct domains on the elytra and thus determines the distinct color patterns in H. axyridis. Recombination between pannier alleles may be reduced by a highly divergent sequence of ∼170 kb in the cis-regulatory regions of pannier, with a 50 kb inversion between color forms. This most likely helps maintain the distinct alleles found in natural populations. Thus, we propose that highly variable discrete color forms can arise in natural populations through cis-regulatory allelic variation of a single gene. More than 200 distinct color forms have been described in natural populations of the harlequin ladybird, Harmonia axyridis. Gautier et al. show that this variation is controlled by the transcription factor Pannier. Pannier is necessary to produce black pigment, and its expression pattern prefigures the coloration pattern in each color form

    The <i>Ectocarpus</i> genome and the independent evolution of multicellularity in brown algae

    Get PDF
    Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related1. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1).We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic2 approaches to explore these and other aspects of brown algal biology further

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments

    Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana

    Get PDF
    The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga

    Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora

    Get PDF
    The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active and deeply integrated cyanobacterial endosymbionts acquired ~60 million years ago. Recent genomic analyses of P. chromatophora have revealed the loss of many essential genes from the endosymbiont’s genome, and have identified more than 30 genes that have been transferred to the host cell’s nucleus through endosymbiotic gene transfer (EGT). This indicates that, similar to classical primary plastids, Paulinella endosymbionts have evolved a transport system to import their nuclear-encoded proteins. To deduce how these proteins are transported, we searched for potential targeting signals in genes for 10 EGT-derived proteins. Our analyses indicate that five proteins carry potential signal peptides, implying they are targeted via the host endomembrane system. One sequence encodes a mitochondrial-like transit peptide, which suggests an import pathway involving a channel protein residing in the outer membrane of the endosymbiont. No N-terminal targeting signals were identified in the four other genes, but their encoded proteins could utilize non-classical targeting signals contained internally or in C-terminal regions. Several amino acids more often found in the Paulinella EGT-derived proteins than in their ancestral set (proteins still encoded in the endosymbiont genome) could constitute such signals. Characteristic features of the EGT-derived proteins are low molecular weight and nearly neutral charge, which both could be adaptations to enhance passage through the peptidoglycan wall present in the intermembrane space of the endosymbiont’s envelope. Our results suggest that Paulinella endosymbionts/plastids have evolved several different import routes, as has been shown in classical primary plastids
    corecore