6 research outputs found

    Wurtzite vs rock-salt MnSe epitaxy: electronic and altermagnetic properties

    Full text link
    Newly discovered altermagnets are magnetic materials exhibiting both compensated magnetic order, similar to antiferromagnets, and simultaneous non-relativistic spin-splitting of the bands, akin to ferromagnets. This characteristic arises from the specific symmetry operations that connect the spin sublattices. In this report, we show with ab initio calculations that the semiconductive MnSe exhibits altermagnetic spin-splitting in the wurtzite phase as well as a critical temperature well above room temperature. It is the first material from such space group identified to possess altermagnetic properties. Furthermore, we demonstrate experimentally through structural characterization techniques that it is possible to obtain thin films of both the intriguing wurtzite phase of MnSe and the more common rock-salt MnSe using molecular beam epitaxy on GaAs substrates. The choice of buffer layers plays a crucial role in determining the resulting phase and consequently extends the array of materials available for the physics of altermagnetism

    Antiferromagnetic Hysteresis Above the Spin Flop Field - source data for https://arxiv.org/abs/2109.00093

    No full text
    Magnetocrystalline anisotropy is essential in the physics of antiferromagnets and commonly treated as a constant, not depending on an external magnetic field. However, we demonstrate that in CoO the anisotropy should necessarily depend on the magnetic field, which is shown by the spin Hall magnetoresistance of the CoO | Pt device. Below the N茅el temperature CoO reveals a spin-flop transition at 240 K at 7.0 T, above which a hysteresis in the angular dependence of magnetoresistance unexpectedly persists up to 30 T. This behavior is shown to agree with the presence of the unquenched orbital momentum, which can play an important role in antiferromagnetic spintronics.</p
    corecore