320 research outputs found

    The obtained of concentrates containing precious metals for pyrometallurgical processing

    Get PDF
    In the presented study the flotation process has been proposed as a method of enrichment of silver-bearing jewellery waste. This method, traditionally used for the enrichment of non-ferrous metal ores, is based on differences in wettability between individual minerals. Flotation concentrate, enriched with Ag, was subjected to further processing by the pyrometallurgical method in order to produce silver from these wastes

    Recovery of precious metals from waste materials by the method of flotation process

    Get PDF
    The article presents the investigation results upon recovery of precious metals from electronics waste and used ceramic catalytic converters. Various frothing agents which generate stable and abundant foam as well as collectors and pH regulators have been used in the investigations. The tests were conducted with the use of laboratory flotation device

    Reversible phase transitions in Na 2

    Full text link

    Landau theory applied to phase transitions in calcium orthotungstate and isostructural compounds

    Full text link
    The pressure-driven tetragonal-to-monoclinic phase transition in CaWO4 and related scheelite-structured orthotungstates is analysed in terms of spontaneous strains. Based upon our previous high-pressure x-ray diffraction results and the Landau theory, it is suggested that the scheelite-to-fergusonite transition is of second order in nature.Comment: 14 pages, 3 figure

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    DFT study of pressure induced phase transitions in LiYF4

    Full text link
    An investigation of the pressure induced phase transition from the scheelite phase (I41/a, Z=4) to the fergusonite-like phase (I2/a, Z=4)/LaTaO(P21/c, Z=4) of LiYF4 is presented. Employing density functional theory (DFT) within the generalized gradient approximation, the internal degrees of freedom were relaxed for a pressure range of 0 GPa to 20 Gpa. The influence of pressure on the lattice vibration spectrum of the scheelite phase (I41/a, Z=4) was evaluated using the direct approach, i.e. using force constants calculated from atomic displacements. The transition volume is in good agreement with experiment, while the transition pressure is overestimated of 6 GPa. At 20 GPa, a P21/c structure with apentacoordinated lithium cation is found to be the most stable phase. This structure is compatible with a transition driven by a Bg zone-center soft optic mode linked to a soft-acoustic mode along the [11-1] direction as observed for the proper ferroelastic transition of BiVO4

    Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases.

    Get PDF
    Dipeptidyl-peptidase VI from Bacillus sphaericus and YkfC from Bacillus subtilis have both previously been characterized as highly specific γ-D-glutamyl-L-diamino acid endopeptidases. The crystal structure of a YkfC ortholog from Bacillus cereus (BcYkfC) at 1.8 Å resolution revealed that it contains two N-terminal bacterial SH3 (SH3b) domains in addition to the C-terminal catalytic NlpC/P60 domain that is ubiquitous in the very large family of cell-wall-related cysteine peptidases. A bound reaction product (L-Ala-γ-D-Glu) enabled the identification of conserved sequence and structural signatures for recognition of L-Ala and γ-D-Glu and, therefore, provides a clear framework for understanding the substrate specificity observed in dipeptidyl-peptidase VI, YkfC and other NlpC/P60 domains in general. The first SH3b domain plays an important role in defining substrate specificity by contributing to the formation of the active site, such that only murein peptides with a free N-terminal alanine are allowed. A conserved tyrosine in the SH3b domain of the YkfC subfamily is correlated with the presence of a conserved acidic residue in the NlpC/P60 domain and both residues interact with the free amine group of the alanine. This structural feature allows the definition of a subfamily of NlpC/P60 enzymes with the same N-terminal substrate requirements, including a previously characterized cyanobacterial L-alanine-γ-D-glutamate endopeptidase that contains the two key components (an NlpC/P60 domain attached to an SH3b domain) for assembly of a YkfC-like active site

    The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function.

    Get PDF
    Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA_OmlA proteins and hence are likely to function as inhibitory proteins

    Nuclear fate of yeast snoRNA is determined by co-transcriptional Rnt1 cleavage

    Get PDF
    Small nucleolar RNA (snoRNA) are conserved and essential non-coding RNA that are transcribed by RNA Polymerase II (Pol II). Two snoRNA classes, formerly distinguished by their structure and ribonucleoprotein composition, act as guide RNA to target RNA such as ribosomal RNA, and thereby introduce specific modifications. We have studied the 5'end processing of individually transcribed snoRNA in S. cerevisiae to define their role in snoRNA biogenesis and functionality. Here we show that pre-snoRNA processing by the endonuclease Rnt1 occurs co-transcriptionally with removal of the m7G cap facilitating the formation of box C/D snoRNA. Failure of this process causes aberrant 3'end processing and mislocalization of snoRNA to the cytoplasm. Consequently, Rnt1-dependent 5'end processing of box C/D snoRNA is critical for snoRNA-dependent methylation of ribosomal RNA. Our results reveal that the 5'end processing of box C/D snoRNA defines their distinct pathway of maturation

    The APT complex is involved in non-coding RNA transcription and is distinct from CPF

    Get PDF
    The 3'-ends of eukaryotic pre-mRNAs are processed in the nucleus by a large multiprotein complex, the cleavage and polyadenylation factor (CPF). CPF cleaves RNA, adds a poly(A) tail and signals transcription termination. CPF harbors four enzymatic activities essential for these processes, but how these are coordinated remains poorly understood. Several subunits of CPF, including two protein phosphatases, are also found in the related 'associated with Pta1' (APT) complex, but the relationship between CPF and APT is unclear. Here, we show that the APT complex is physically distinct from CPF. The 21 kDa Syc1 protein is associated only with APT, and not with CPF, and is therefore the defining subunit of APT. Using ChIP-seq, PAR-CLIP and RNA-seq, we show that Syc1/APT has distinct, but possibly overlapping, functions from those of CPF. Syc1/APT plays a more important role in sn/snoRNA production whereas CPF processes the 3'-ends of protein-coding pre-mRNAs. These results define distinct protein machineries for synthesis of mature eukaryotic protein-coding and non-coding RNAs
    corecore