126 research outputs found

    Atomic structure and segregation in alkali-metal heteroclusters

    Get PDF
    The ground-state atomic and electronic distributions in NamCsn clusters with composition m=n and m=2n have been calculated by minimizing the total cluster energy using the density-functional formalism. The approximation is made by replacing the total external potential of the ions by its spherical average around the cluster center during the iterative process of solving the Kohn-Sham equations for each geometry tested. In the size range studied here (up to 90 atoms per cluster), the cluster is composed of well-separated homoatomic Na and Cs shells, the external one always being a Cs shell. We have also found that the cohesive energy goes rapidly to the bulk limit. An analysis of the geometries shows strong cluster reconstruction with increasing size. By comparing the geometry of pure Nan with that of the Nan core in NanCsn for clusters formed by only an inner Na layer and an outer Cs layer, we have observed that the Nan core adopts a geometry different in most cases from that of the free Nan cluster, and such that the number of faces of the polyhedron formed by the Nan core is as close as possible to the number of external Cs atoms, in order to accomodate these Cs atoms on top of the faces of the polyhedron

    Organocatalytic asymmetric domino Michael–Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones

    Get PDF
    This paper was submitted for publication in the journal "Chemical Communications" and the definitive version can be found at: http://dx.doi.org/10.1039/c3cc39165eThe first organocatalytic asymmetric reaction between 1,4-cyclohexanedione and nitroalkenes have been studied, affording bicyclo[3.2.1]octane derivatives containing four continuous stereogenic centres. The products were obtained through a domino Michael-Henry process as a single diastereoisomer with excellent enantioselectivities
    corecore