65 research outputs found
Beyond the Interface Limit: Structural and Magnetic Depth Profiles of Voltage-Controlled Magneto-Ionic Heterostructures
Electric-field control of magnetism provides a promising route towards
ultralow power information storage and sensor technologies. The effects of
magneto-ionic motion have so far been prominently featured in the direct
modification of interface chemical and physical characteristics. Here we
demonstrate magnetoelectric coupling moderated by voltage-driven oxygen
migration beyond the interface limit in relatively thick AlOx/GdOx/Co (15 nm)
films. Oxygen migration and its ramifications on the Co magnetization are
quantitatively mapped with polarized neutron reflectometry under thermal and
electro-thermal conditionings. The depth-resolved profiles uniquely identify
interfacial and bulk behaviors and a semi-reversible suppression and recovery
of the magnetization. Magnetometry measurements show that the conditioning
changes the microstructure so as to disrupt long-range ferromagnetic ordering,
resulting in an additional magnetically soft phase. X-ray spectroscopy confirms
electric field induced changes in the Co oxidation state but not in the Gd,
suggesting that the GdOx transmits oxygen but does not source or sink it. These
results together provide crucial insight into controlling magnetic
heterostructures via magneto-ionic motion, not only at the interface, but also
throughout the bulk of the films
Precipitating Ordered Skyrmion Lattices from Helical Spaghetti
Magnetic skyrmions have been the focus of intense research due to their
potential applications in ultra-high density data and logic technologies, as
well as for the unique physics arising from their antisymmetric exchange term
and topological protections. In this work we prepare a chiral jammed state in
chemically disordered (Fe, Co)Si consisting of a combination of
randomly-oriented magnetic helices, labyrinth domains, rotationally disordered
skyrmion lattices and/or isolated skyrmions. Using small angle neutron
scattering, (SANS) we demonstrate a symmetry-breaking magnetic field sequence
which disentangles the jammed state, resulting in an ordered, oriented skyrmion
lattice. The same field sequence was performed on a sample of powdered Cu2OSeO3
and again yields an ordered, oriented skyrmion lattice, despite relatively
non-interacting nature of the grains. Micromagnetic simulations confirm the
promotion of a preferred skyrmion lattice orientation after field treatment,
independent of the initial configuration, suggesting this effect may be
universally applicable. Energetics extracted from the simulations suggest that
approaching a magnetic hard axis causes the moments to diverge away from the
magnetic field, increasing the Dzyaloshinskii-Moriya energy, followed
subsequently by a lattice re-orientation. The ability to facilitate an emergent
ordered magnetic lattice with long-range orientation in a variety of materials
despite overwhelming internal disorder enables the study of skyrmions even in
imperfect powdered or polycrystalline systems and greatly improves the ability
to rapidly screen candidate skyrmion materials
Ionic Tuning of Cobaltites at the Nanoscale
Control of materials through custom design of ionic distributions represents
a powerful new approach to develop future technologies ranging from spintronic
logic and memory devices to energy storage. Perovskites have shown particular
promise for ionic devices due to their high ion mobility and sensitivity to
chemical stoichiometry. In this work, we demonstrate a solid-state approach to
control of ionic distributions in (La,Sr)CoO thin films. Depositing a Gd
capping layer on the perovskite film, oxygen is controllably extracted from the
structure, up-to 0.5 O/u.c. throughout the entire 36 nm thickness. Commensurate
with the oxygen extraction, the Co valence state and saturation magnetization
show a smooth continuous variation. In contrast, magnetoresistance measurements
show no-change in the magnetic anisotropy and a rapid increase in the
resistivity over the same range of oxygen stoichiometry. These results suggest
significant phase separation, with metallic ferromagnetic regions and
oxygen-deficient, insulating, non-ferromagnetic regions, forming percolated
networks. Indeed, X-ray diffraction identifies oxygen-vacancy ordering,
including transformation to a brownmillerite crystal structure. The unexpected
transformation to the brownmillerite phase at ambient temperature is further
confirmed by high-resolution scanning transmission electron microscopy which
shows significant structural - and correspondingly chemical - phase separation.
This work demonstrates room-temperature ionic control of magnetism, electrical
resistivity, and crystalline structure in a 36 nm thick film, presenting new
opportunities for ionic devices that leverage multiple material
functionalities
Nitrogen-Based Magneto-Ionic Manipulation of Exchange Bias in CoFe/MnN Heterostructures
Electric field control of the exchange bias effect across
ferromagnet/antiferromagnet (FM/AF) interfaces has offered exciting potentials
for low-energy-dissipation spintronics. In particular, the solid state
magneto-ionic means is highly appealing as it may allow reconfigurable
electronics by transforming the all-important FM/AF interfaces through ionic
migration. In this work, we demonstrate an approach that combines the
chemically induced magneto-ionic effect with the electric field driving of
nitrogen in the Ta/CoFe/MnN/Ta structure to electrically
manipulate exchange bias. Upon field-cooling the heterostructure, ionic
diffusion of nitrogen from MnN into the Ta layers occurs. A significant
exchange bias of 618 Oe at 300 K and 1484 Oe at 10 K is observed, which can be
further enhanced after a voltage conditioning by 5% and 19%, respectively. This
enhancement can be reversed by voltage conditioning with an opposite polarity.
Nitrogen migration within the MnN layer and into the Ta capping layer cause the
enhancement in exchange bias, which is observed in polarized neutron
reflectometry studies. These results demonstrate an effective nitrogen-ion
based magneto-ionic manipulation of exchange bias in solid-state devices.Comment: 28 pages, 4 figures; supporting information: 17 pages, 11 figure
Interfacial-Redox-Induced Tuning of Superconductivity in YBa2Cu3O7-δ.
Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBa2Cu3O7-δ (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective step toward total ionic tuning of superconductivity in oxides, an interface-induced effect that goes well into the quasi-bulk regime, opening-up possibilities for electric field manipulation
Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer.
Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications
Exploring interfacial exchange coupling and sublattice effect in heavy metal/ferrimagnetic insulator heterostructures using Hall measurements, x-ray magnetic circular dichroism, and neutron reflectometry
We use temperature-dependent Hall measurements to identify contributions of
spin Hall, magnetic proximity, and sublattice effects to the anomalous Hall
signal in heavy metal/ferrimagnetic insulator heterostructures with
perpendicular magnetic anisotropy. This approach enables detection of both the
magnetic proximity effect onset temperature and the magnetization compensation
temperature and provides essential information regarding the interfacial
exchange coupling. Onset of a magnetic proximity effect yields a local extremum
in the temperature-dependent anomalous Hall signal, which occurs at higher
temperature as magnetic insulator thickness increases. This magnetic proximity
effect onset occurs at much higher temperature in Pt than W. The magnetization
compensation point is identified by a sharp anomalous Hall sign change and
divergent coercive field. We directly probe the magnetic proximity effect using
x-ray magnetic circular dichroism and polarized neutron reflectometry, which
reveal an antiferromagnetic coupling between W and the magnetic insulator.
Finally, we summarize the exchange-coupling configurations and the anomalous
Hall-effect sign of the magnetized heavy metal in various heavy metal/magnetic
insulator heterostructures
Emergent electric field control of phase transformation in oxide superlattices.
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality
- …