110 research outputs found
Changes in the tear proteins of diabetic patients
BACKGROUND: Previous studies have shown a significant increase in tear protein peaks in the tears of diabetic patients suffering from dry eye. The aim of this study was to analyze the tear protein patterns from patients with diabetes mellitus who do not suffer from ocular surface diseases (DIA). METHODS: A total of 515 patients were examined in this study (255 healthy subjects (controls) and 260 patients suffering from diabetes mellitus). Tear proteins were separated by sodium-dodecyl-sulfate polyacrylamide gel electrophoresis. After digital image analysis densitometric data files were created and subsequently used for multivariate statistical procedures. RESULTS: A significant increase in the number of peaks was detected in diabetic patients compared to controls (P < 0.0003). The analysis of discriminance revealed a highly significant discrimination between diabetic patients and controls (Wilks lambda: 0.27; P < 0.000001). Furthermore, a significant difference in the protein pattern of diabetic patients could be detected between those suffering from dry eye or not (P < 0.002). The changes in protein patterns of diabetic patients increased with the duration of the diabetic disease. In diabetic patients with a disease duration longer than 10 years the changes were significantly more expressed than in patients with a shorter diabetic history (P < 0.003) and in healthy subjects (P < 0.0001). CONCLUSIONS: The tear protein patterns of diabetic patients are very different in the number and intensity of spots from those of healthy subjects. Furthermore, it could be demonstrated that the differences found in the tear patterns of diabetic patients are not equal to those found in previous studies in patients suffering from dry-eye disease. The alterations in the diabetic tears were correlated with the duration of the diabetic disease. With longer disease, history changes in the tear protein patterns increased. With the course of the disease some protein peaks appeared that are not present in healthy persons. Our study shows that the analysis of electrophoretic tear protein patterns is a new non-invasive approach in the early diagnosis and analysis of the pathogenesis of diabetes induced ocular surface disease
Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case
Background:In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon.Results:Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family.Conclusions:Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution
Genomic Organization and Evolution of the Vomeronasal Type 2 Receptor-Like (OlfC) Gene Clusters in Atlantic Salmon, Salmo salar
There are three major multigene superfamilies of olfactory receptors (OR, V1R, and V2R) in mammals. The ORs are expressed in the main olfactory organ, whereas the V1Rs and V2Rs are located in the vomeronasal organ. Fish only possess one olfactory organ in each nasal cavity, the olfactory rosette; therefore, it has been proposed that their V2R-like genes be classified as olfactory C family G protein-coupled receptors (OlfC). There are large variations in the sizes of OR gene repertoires. Previous studies have shown that fish have between 12 and 46 functional V2R-like genes, whereas humans have lost all functional V2Rs, and frog sp. have more than 240. Pseudogenization of V2R genes is a prevalent event across species. In the mouse and frog genomes, there are approximately double the number of pseudogenes compared with functional genes. An oligonucleotide probe was designed from a conserved sequence from four Atlantic salmon OlfC genes and used to screen the Atlantic salmon bacterial artificial chromosome (BAC) library. Hybridization-positive BACs were matched to fingerprint contigs, and representative BACs were shotgun cloned and sequenced. We identified 55 OlfC genes. Twenty-nine of the OlfC genes are classified as putatively functional genes and 26 as pseudogenes. The OlfC genes are found in two genomic clusters on chromosomes 9 and 20. Phylogenetic analysis revealed that the OlfC genes could be divided into 10 subfamilies, with nine of these subfamilies corresponding to subfamilies found in other teleosts and one being salmon specific. There is also a large expansion in the number of OlfC genes in one subfamily in Atlantic salmon. Subfamily gene expansions have been identified in other teleosts, and these differences in gene number reflect species-specific evolutionary requirements for olfaction. Total RNA was isolated from the olfactory epithelium and other tissues from a presmolt to examine the expression of the odorant genes. Several of the putative OlfC genes that we identified are expressed only in the olfactory epithelium, consistent with these genes encoding odorant receptors
Heterogeneity in clinical practices for post-cardiotomy extracorporeal life support: A pilot survey from the PELS-1 multicenter study
Background: High-quality evidence for post-cardiotomy extracorporeal life support (PC-ECLS) management is lacking. This study investigated real-world PC-ECLS clinical practices. Methods: This cross-sectional, multi-institutional, international pilot survey explored center organization, anticoagulation management, left ventricular unloading, distal limb perfusion, PC-ECLS monitoring, and transfusion practices. Twenty-nine questions were distributed among 34 hospitals participating in the Post-cardiotomy Extra-Corporeal Life Support Study. Results: Of the 32 centers [16 low-volume (50%); 16 high-volume (50%)] that responded, 16 (50%) had dedicated ECLS specialists. Twenty-six centers (81.3%) reported using additional mechanical circulatory supports. Anticoagulation practices were highly heterogeneous: 24 hospitals (75%) reported using patients bleeding status as a guide, without a specific threshold in 54.2% of cases. Transfusion targets ranged from 7 to 10 g/dL. Most centers used cardiac venting on a case-by-case basis (78.1%) and regular distal limb perfusion (84.4%). Nineteen (54.9%) centers reported dedicated monitoring protocols, including daily echocardiography (87.5%), Swan-Ganz catheterization (40.6%), cerebral near-infrared spectroscopy (53.1%), and multimodal assessment of limb ischemia. Inspection of the circuit (71.9%), oxygenator pressure drop (68.8%), plasma free hemoglobin (75%), d-dimer (59.4%), lactate dehydrogenase (56.3%), and fibrinogen (46.9%) are used to diagnose hemolysis and thrombosis. Conclusions: This study shows remarkable heterogeneity in clinical practices for PC-ECLS management. More standardized protocols and better implementation of the available evidence are recommended
Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future
Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%â5.0%) in those aged 55â59 years to 17.6% (95%
- âŠ