1,683 research outputs found
Electron Spin Resonance of the Yb 4f moment in Yb(Rh1-xCox)2Si2
[published in Phys. Rev. B 85, 035119 (2012)] The evolution of spin dynamics
from the quantum critical system YbRh2Si2 to the stable trivalent Yb system
YbCo2Si2 was investigated by Electron Spin Resonance (ESR) spectroscopy. While
the Kondo temperature changes by one order of magnitude, all compositions of
the single crystalline series Yb(Rh1-xCox)2Si2 show well defined ESR spectra
with a clear Yb3+ character for temperatures below \approx 20 K. With
increasing Co-content the ESR g-factor along the c-direction strongly increases
indicating a continuous change of the ground state wave function and, thus, a
continuous change of the crystal electric field. The linewidth presents a
complex dependence on the Co-content and is discussed in terms of the Co-doping
dependence of the Kondo interaction, the magnetic anisotropy and the influence
of ferromagnetic correlations between the 4f states. The results provide
evidence that, for low Co-doping, the Kondo interaction allows narrow ESR
spectra despite the presence of a large magnetic anisotropy, whereas at high
Co-concentrations, the linewidth is controlled by ferromagnetic correlations. A
pronounced broadening due to critical correlations at low temperatures is only
observed at the highest Co-content. This might be related to the presence of
incommensurate magnetic fluctuations.Comment: 8 pages, 8 Figure
Anisotropic electron spin resonance of YbIr2Si2
A series of electron spin resonance (ESR) experiments were performed on a
single crystal of the heavy fermion metal YbIr2Si2 to map out the anisotropy of
the ESR-intensity I_ESR which is governed by the microwave field component of
the g-factor. The temperature dependencies of I_ESR(T) and g(T) were measured
for different orientations and compared within the range 2.6K \le T \le 16K.
The analysis of the intensity dependence on the crystal orientation with
respect to both the direction of the microwave field and the static magnetic
field revealed remarkable features: The intensity variation with respect to the
direction of the microwave field was found to be one order of magnitude smaller
than expected from the g-factor anisotropy. Furthermore, we observed a weak
basal plane anisotropy of the ESR parameters which we interpret to be an
intrinsic sample property.Comment: 10 pages, 5 figure
Pressure Induced Hydration Dynamics of Membranes
Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics
of the hydration of the hexagonal phase in biological membranes show that (i)
the relaxation of the unit cell spacing is non-exponential in time; (ii) the
Bragg peaks shift smoothly to their final positions without significant
broadening or loss in crystalline order. This suggests that the hydration is
not diffusion limited but occurs via a rather homogeneous swelling of the whole
lattice, described by power law kinetics with an exponent .Comment: REVTEX 3, 10 pages,3 figures(available on request),#
Heavy fermion and Kondo lattice behavior in the itinerant ferromagnet CeCrGe3
Physical properties of polycrystalline CeCrGe and LaCrGe have
been investigated by x-ray absorption spectroscopy, magnetic susceptibility
, isothermal magnetization M(H), electrical resistivity ,
specific heat C() and thermoelectric power S() measurements. These
compounds are found to crystallize in the hexagonal perovskite structure (space
group \textit{P6/mmc}), as previously reported. The ,
and C() data confirm the bulk ferromagnetic ordering of itinerant Cr moments
in LaCrGe and CeCrGe with = 90 K and 70 K respectively. In
addition a weak anomaly is also observed near 3 K in the C() data of
CeCrGe. The T dependences of and finite values of Sommerfeld
coefficient obtained from the specific heat measurements confirm that
both the compounds are of metallic character. Further, the dependence of
of CeCrGe reflects a Kondo lattice behavior. An enhanced
of 130 mJ/mol\,K together with the Kondo lattice behavior inferred from
the establish CeCrGe as a moderate heavy fermion compound with
a quasi-particle mass renormalization factor of 45.Comment: 7 pages, 7 figures. Accepted by Journal of Physics: Condensed Matte
Spin fluctuations with two-dimensional XY behavior in a frustrated S = 1/2 square-lattice ferromagnet
The spin dynamics of the layered square-lattice vanadate Pb2VO(PO4)2 is
investigated by electron spin resonance at various magnetic fields and at
temperatures above magnetic ordering. The linewidth divergence towards low
temperatures seems to agree with isotropic Heisenberg-type spin exchange
suggesting that the spin relaxation in this quasi-two dimensional compound is
governed by low-dimensional quantum fluctuations. However, a weak easy- plane
anisotropy of the g factor points to the presence of a planar XY type of
exchange. Indeed, we found that the linewidth divergence is described best by
XY-like spin fluctuations which requires a single parameter only. Therefore,
ESR-probed spin dynamics could establish Pb2VO(PO4)2 as the first frustrated
square lattice system with XY-inherent spin topological fluctuations.Comment: 5 pages, 3 figure
Exploring high temperature magnetic order in CeTi_1-xSc_xGe
Most of magnetic transitions related to Ce ordering are found below
T_ord~12K. Among the few cases exceeding that temperature, two types of
behaviors can be distinguished. One of them is related to the rare cases of Ce
binary compounds formed in BCC structures, with a quartet ground state, whose
degeneracy is reduced by undergoing different types of transitions mostly
structural. The other group shows evidences of itinerant character with the
outstanding example of CeRh_3B_2 showing the highest T_ord=115K. The second
highest ordering temperature has been reported for CeScGe with T_ord=47K, but
the nature of this magnetic state has not been investigated very deeply. In
order to shed more light into this unusual high temperature ordering we studied
the structural, magnetic, transport and thermal properties of CeTi_1-xSc_xGe
alloys in the stability range of the CeScSi-type structure 0.25<x<1 This system
presents a rich variety of magnetic behaviors along this concentration range,
with the magnetic ordering growing from ferromagnetic (FM) T_C~7K up to an
antiferromagnetic (AFM) transition at T_N=47K. The different regions show the
following characteristics: i) on the Ti rich side (0.25<x<0.50) it exhibits a
FM ground state (GS) with large saturation magnetization values M_sat up to
~1.15 mu_B. ii) Around x=0.60, the first crystal electric field excited doublet
starts to contribute to the GS magnetic properties. Furthermore an AFM
component with a connected metamagnetic transition appears. iii) At x=0.65 a
clear change in the GS nature is associated to a critical point above which the
GS properties can be described like for an itinerant system (with decreasing
M_sat) and an effective GS degeneracy N_eff=4. iv) For x>0.65, the magnetic
phase boundary splits into two transitions, with an intermediate phase
presenting incommensurate spin density waves features.Comment: 8 pages, 10 figure
- …