273 research outputs found

    The molecular basis of human retinal and vitreoretinal diseases

    Full text link
    During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and color blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives

    Biofortification of essential nutritional compounds and trace elements in rice and cassava

    Get PDF
    Plant biotechnology can make important contributions to food security and nutritional improvement. For example, the development of ‘Golden Rice' by Professor Ingo Potrykus was a milestone in the application of gene technology to deliver both increased nutritional qualities and health improvement to wide sections of the human population. Mineral nutrient and protein deficiency as well as food security remain the most important challenges for developing countries. Current projects are addressing these issues in two major staple crops, cassava (Manihot esculenta Crantz) and rice. The tropical root crop cassava is a major source of food for approximately 600 million of the population worldwide. In sub-Saharan Africa >200 million of the population rely on cassava as their major source of dietary energy. The nutritional quality of the cassava root is not sufficient to meet all dietary needs. Rice is the staple food for half the world population, providing approximately 20% of the per capita energy and 13% of the protein for human consumption worldwide. In many developing countries the dietary contributions of rice are substantially greater (29·3% dietary energy and 29·1% dietary protein). The current six most popular ‘mega' rice varieties (in terms of popularity and acreage), including Chinese hybrid rice, have an incomplete amino acid profile and contain limited amounts of essential micronutrients. Rice lines with improved Fe contents have been developed using genes that have functions in Fe absorption, translocation and accumulation in the plant, as well as improved Fe bioavailability in the human intestine. Current developments in biotechnology-assisted plant improvement are reviewed and the potential of the technology in addressing human nutrition and health are discusse

    Identification of the genetic defect in the original Wagner syndrome family

    Full text link
    PURPOSE: The aim of the present study was to determine the genetic defect in Wagner syndrome, a rare disorder belonging to the group of hereditary vitreoretinal degenerations. This disease has been genetically mapped to chromosome 5q14.3. METHODS: Molecular analysis was performed in the progeny of the original pedigree described by Wagner in 1938. We searched for pathogenic mutations and their effects in two candidate genes, CSPG2 and EDIL3, which locate to the critical chromosomal interval. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis was used to investigate potential splice defects of CSPG2 transcripts. RESULTS: While no alterations were detected in the exons of EDIL3, several changes were identified in the CSPG2 gene. Only one of the novel changes, a heterozygous G to A substitution of the first nucleotide in intron 8, cosegregates with the disease phenotype. This change disrupts the highly conserved splice donor sequence. In blood cells of an index patient, we found CSPG2 transcripts with normally spliced exon 8/9 junction but also two additional CSPG2 transcripts, which were not detected in the control. One lacks the entire exon 8, while the other is missing only the last 21 bp of exon 8. CONCLUSIONS: CSPG2 encodes versican, a large proteoglycan, which is an extracellular matrix component of the human vitreous and participates in the formation of the vitreous gel. The splice site mutation described here may lead to a complete lack of exon 8 in CSPG2 transcripts, which shortens the predicted protein by 1754 amino acids and leads to severe reduction of glycosaminoglycan attachment sites

    Morpho-physiological and molecular evaluation of drought tolerance in cassava (Manihot esculenta Crantz)

    Get PDF
    Open Access Article; Published online: 28 Jun 2020Understanding drought tolerance mechanisms of cassava is a pre-requisite to improve the performance of the crop in water-scarce regions. Several hypotheses have been formulated to suggest how cassava can withstand a prolonged period of drought. We performed field trials under drought conditions with a selection of 37 cassava genotypes to identify phenotypic and molecular patterns associated with drought tolerance. Plant morphologies varied significantly between cassava genotypes under drought conditions in Kenya, which indicates a strong genetic basis for phenotypic differences. Drought stress reduced yield by 59%, the number of edible storage roots by 43% and leaf retention by 50% on average. Over three years and in two experimental field sites, the most drought tolerant genotype bulked 7.1 (±2.1) t/ha yield while the most drought susceptible genotype yielded 3.3 (±1.4) t/ha under drought conditions. The significant positive correlation of yield under irrigated and non-irrigated conditions suggests that selection of genotypes with high yield performance under well-watered or control conditions should be prioritized to identify genotypes with superior performance under drought stress. The positive correlation between yield and leaf retention provided further evidence that leaf longevity positively contributes to yield in water-deficit conditions. Yield differences could be attributed in part to variation in stomatal conductance (gs) because selected drought tolerant genotypes maintained higher gs and delayed stomatal closure as compared to drought susceptible genotypes. Further analysis revealed that genetic or molecular differences for gs between drought tolerant and susceptible genotypes could be detected at early stages of water deficit. These differences likely involve both abscisic acid (ABA)-dependent and ABA-independent molecular pathways

    Global regulatory architecture of human, mouse and rat tissue transcriptomes

    Get PDF
    Background Predicting molecular responses in human by extrapolating results from model organisms requires a precise understanding of the architecture and regulation of biological mechanisms across species. Results Here, we present a large-scale comparative analysis of organ and tissue transcriptomes involving the three mammalian species human, mouse and rat. To this end, we created a unique, highly standardized compendium of tissue expression. Representative tissue specific datasets were aggregated from more than 33,900 Affymetrix expression microarrays. For each organism, we created two expression datasets covering over 55 distinct tissue types with curated data from two independent microarray platforms. Principal component analysis (PCA) revealed that the tissue-specific architecture of transcriptomes is highly conserved between human, mouse and rat. Moreover, tissues with related biological function clustered tightly together, even if the underlying data originated from different labs and experimental settings. Overall, the expression variance caused by tissue type was approximately 10 times higher than the variance caused by perturbations or diseases, except for a subset of cancers and chemicals. Pairs of gene orthologs exhibited higher expression correlation between mouse and rat than with human. Finally, we show evidence that tissue expression profiles, if combined with sequence similarity, can improve the correct assignment of functionally related homologs across species. Conclusion The results demonstrate that tissue-specific regulation is the main determinant of transcriptome composition and is highly conserved across mammalian species

    Glucan, Water Dikinase Exerts Little Control over Starch Degradation in Arabidopsis Leaves at Night  

    Get PDF
    The first step on the pathway of starch degradation in Arabidopsis (Arabidopsis thaliana) leaves at night is the phosphorylation of starch polymers, catalyzed by glucan, water dikinase (GWD). It has been suggested that GWD is important for the control of starch degradation, because its transcript levels undergo strong diel fluctuations, its activity is subject to redox regulation in vitro, and starch degradation is strongly decreased in gwd mutant plants. To test this suggestion, we analyzed changes in GWD protein abundance in relation to starch levels in wild-type plants, in transgenic plants in which GWD transcripts were strongly reduced by induction of RNA interference, and in transgenic plants overexpressing GWD. We found that GWD protein levels do not vary over the diel cycle and that the protein has a half-life of 2 d. Overexpression of GWD does not accelerate starch degradation in leaves, and starch degradation is not inhibited until GWD levels are reduced by 70%. Surprisingly, this degree of reduction also inhibits starch synthesis in the light. To discover the importance of redox regulation, we generated transgenic plants expressing constitutively active GWD. These plants retained normal control of degradation. We conclude that GWD exerts only a low level of control over starch degradation in Arabidopsis leaves
    • …
    corecore