14 research outputs found

    Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids

    Get PDF
    Human primordial germ cells (hPGCs), the precursors of sperm and eggs, are specified during weeks 2-3 after fertilization. Few studies on ex vivo and in vitro cultured human embryos reported plausible hPGCs on embryonic day (E) 12-13 and in an E16-17 gastrulating embryo. In vitro, hPGC-like cells (hPGCLCs) can be specified from the intermediary pluripotent stage or peri-gastrulation precursors. Here, we explore the broad spectrum of hPGCLC precursors and how different precursors impact hPGCLC development. We show that resetting precursors can give rise to hPGCLCs (rhPGCLCs) in response to BMP. Strikingly, rhPGCLCs co-cultured with human hindgut organoids progress at a pace reminiscent of in vivo hPGC devel-opment, unlike those derived from peri-gastrulation precursors. Moreover, rhPGCLC specification depends on both EOMES and TBXT, not just on EOMES as for peri-gastrulation hPGCLCs. Importantly, our study pro-vides the foundation for developing efficient in vitro models of human gametogenesis.Peer reviewe

    Epigenetic resetting in the human germ line entails histone modification remodeling.

    Get PDF
    Epigenetic resetting in the mammalian germ line entails acute DNA demethylation, which lays the foundation for gametogenesis, totipotency, and embryonic development. We characterize the epigenome of hypomethylated human primordial germ cells (hPGCs) to reveal mechanisms preventing the widespread derepression of genes and transposable elements (TEs). Along with the loss of DNA methylation, we show that hPGCs exhibit a profound reduction of repressive histone modifications resulting in diminished heterochromatic signatures at most genes and TEs and the acquisition of a neutral or paused epigenetic state without transcriptional activation. Efficient maintenance of a heterochromatic state is limited to a subset of genomic loci, such as evolutionarily young TEs and some developmental genes, which require H3K9me3 and H3K27me3, respectively, for efficient transcriptional repression. Accordingly, transcriptional repression in hPGCs presents an exemplary balanced system relying on local maintenance of heterochromatic features and a lack of inductive cues

    Stem-cell transplantation in children with acute lymphoblastic leukemia: A prospective international multicenter trial comparing sibling donors with matched unrelated donors-The ALL-SCT-BFM-2003 trial

    Full text link
    PURPOSE Although hematopoietic stem-cell transplantation is widely performed in children with high-risk acute lymphoblastic leukemia (ALL), the influence of donor types is poorly understood. Thus, transplantation outcomes were compared in the prospective multinational Berlin-Frankfurt-Muenster (BFM) study group trial: ALL-SCT-BFM 2003 (Allogeneic Stem Cell Transplantation in Children and Adolescents with Acute Lymphoblastic Leukemia). PATIENTS AND METHODS After conditioning with total-body irradiation and etoposide, 411 children with high-risk ALL received highly standardized stem-cell transplantations during the first or later remissions. Depending on donor availability, grafts originated from HLA-genoidentical siblings or from HLA-matched unrelated donors who were identified and matched by high-resolution allelic typing and were compatible in at least 9 of 10 HLA loci. RESULTS Four-year event-free survival (± standard deviation [SD]) did not differ between patients with transplantations from unrelated or sibling donors (0.67 ± 0.03 v 0.71 ± 0.05; P = .405), with cumulative incidences of nonrelapse mortality (± SD) of 0.10 ± 0.02 and 0.03 ± 0.02 (P = .017) and relapse rates (± SD) of 0.22 ± 0.02 and 0.24 ± 0.04 (P = .732), respectively. Among recipients of transplantations from unrelated donors, no significant differences in event-free survival, overall survival, or nonrelapse mortality were observed between 9/10 and 10/10 matched grafts or between peripheral blood stem cells and bone marrow. The absence of chronic graft-versus-host disease had no effect on event-free survival. Engraftment was faster after bone marrow transplantation from siblings and was associated with fewer severe infections and pulmonary complications. CONCLUSION Outcome among high-risk pediatric patients with ALL after hematopoietic stem-cell transplantation was not affected by donor type. Standardized myeloablative conditioning produced a low incidence of treatment-related mortality and effective control of leukemia

    Stem-Cell Transplantation in Children With Acute Lymphoblastic Leukemia: A Prospective International Multicenter Trial Comparing Sibling Donors With Matched Unrelated Donors—The ALL-SCT-BFM-2003 Trial

    No full text
    PURPOSE Although hematopoietic stem-cell transplantation is widely performed in children with high-risk acute lymphoblastic leukemia (ALL), the influence of donor types is poorly understood. Thus, transplantation outcomes were compared in the prospective multinational Berlin-Frankfurt-Muenster (BFM) study group trial: ALL-SCT-BFM 2003 (Allogeneic Stem Cell Transplantation in Children and Adolescents with Acute Lymphoblastic Leukemia). PATIENTS AND METHODS After conditioning with total-body irradiation and etoposide, 411 children with high-risk ALL received highly standardized stem-cell transplantations during the first or later remissions. Depending on donor availability, grafts originated from HLA-genoidentical siblings or from HLA-matched unrelated donors who were identified and matched by high-resolution allelic typing and were compatible in at least 9 of 10 HLA loci. RESULTS Four-year event-free survival (± standard deviation [SD]) did not differ between patients with transplantations from unrelated or sibling donors (0.67 ± 0.03 v 0.71 ± 0.05; P = .405), with cumulative incidences of nonrelapse mortality (± SD) of 0.10 ± 0.02 and 0.03 ± 0.02 (P = .017) and relapse rates (± SD) of 0.22 ± 0.02 and 0.24 ± 0.04 (P = .732), respectively. Among recipients of transplantations from unrelated donors, no significant differences in event-free survival, overall survival, or nonrelapse mortality were observed between 9/10 and 10/10 matched grafts or between peripheral blood stem cells and bone marrow. The absence of chronic graft-versus-host disease had no effect on event-free survival. Engraftment was faster after bone marrow transplantation from siblings and was associated with fewer severe infections and pulmonary complications. CONCLUSION Outcome among high-risk pediatric patients with ALL after hematopoietic stem-cell transplantation was not affected by donor type. Standardized myeloablative conditioning produced a low incidence of treatment-related mortality and effective control of leukemia

    Single-cell roadmap of human gonadal development.

    No full text
    Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis
    corecore