22 research outputs found

    Evidence for Solar Influences on Nuclear Decay Rates

    Full text link
    Recent reports of periodic fluctuations in nuclear decay data of certain isotopes have led to the suggestion that nuclear decay rates are being influenced by the Sun, perhaps via neutrinos. Here we present evidence for the existence of an additional periodicity that appears to be related to the Rieger periodicity well known in solar physics.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    Phenomenological Implications of a Magnetic 5th Force

    Full text link
    A 5th force coupling to baryon number BB has been proposed to account for the correlations between the acceleration differences Δaij\Delta a_{ij} of the samples studied in the E\"{o}tv\"{o}s experiment, and the corresponding differences in the baryon-to-mass ratios Δ(B/μ)ij\Delta(B/\mu)_{ij}. To date the E\"{o}tv\"{o}s results have not been supported by modern experiments. Here we investigate the phenomenological implications of a possible magnetic analog B⃗5\vec{\mathscr{B}}_5 of the conventional 5th force electric field, E⃗5\vec{\mathscr{E}}_5, arising from the Earth's rotation. We demonstrate that, in the presence of couplings proportional to B⃗5\vec{\mathscr{B}}_5, both the magnitude and direction of a possible 5th force field could be quite different from what would otherwise be expected and warrants further investigation.Comment: 31 pages, 1 figure, ws-ijmpa.cls, minor changes, final version to appear in International Journal of Modern Physics

    Visualization of Glutamine Transporter Activities in Living Cells Using Genetically Encoded Glutamine Sensors

    Get PDF
    Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of Föster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level

    Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis

    Get PDF
    Tower CO2 flux measurements from 20 European grasslands in the EUROGRASSFLUX data set covering a wide range of environmental and management conditions were analyzed with respect to their ecophysiological characteristics and CO2 exchange (gross primary production, Pg, and ecosystem respiration, Re) using light-response function analysis. Photosynthetically active radiation (Q) and top-soil temperature (Ts) were identified as key factors controlling CO2 exchange between grasslands and the atmosphere at the 30-min scale. A nonrectangular hyperbolic light-response model P(Q) and modified nonrectangular hyperbolic light–temperature-response model P(Q, Ts) proved to be flexible tools for modeling CO2 exchange in the light. At night, it was not possible to establish robust instantaneous relationships between CO2 evolution rate rn and environmental drivers, though under certain conditions, a significant relationship rn=r0 ekTTs was found using observation windows 7–14 days wide. Principal light-response parameters—apparent quantum yield, saturated gross photosynthesis, daytime ecosystem respiration, and gross ecological light-use efficiency, = Pg/Q, display patterns of seasonal dynamics which can be formalized and used for modeling. Maximums of these parameters were found in intensively managed grasslands of Atlantic climate. Extensively used semi-natural grasslands of southern and central Europe have much lower production, respiration, and light-use efficiency, while temperate and mountain grasslands of central Europe ranged between these two extremes. Parameters from light–temperature-response analysis of tower data are in agreement with values obtained using closed chambers and free-air CO2 enrichment. Correlations between light-response and productivity parameters provides the possibility to use the easier to measure parameters to estimate the parameters that are more difficult to measure. Gross primary production (Pg) of European grasslands ranges from 1700 g CO2 m−2 year−1 in dry semi-natural pastures to 6900 g CO2 m−2 year−1 in intensively managed Atlantic grasslands. Ecosystem respiration (Re) is in the range 1800 2400 g CO2 m−2 year−1) to significant release (<−600 g CO2 m−2 year−1), though in 15 out of 19 cases grasslands performed as net CO2 sinks. The carbon source was associated with organic rich soils, grazing, and heat stress. Comparison of Pg, Re, and NEE for tower sites with the same characteristics from previously published papers obtained with other methods did not reveal significant discrepancies. Preliminary results indicate relationships of grassland Pg and Re to macroclimatic factors (precipitation and temperature), but these relationships cannot be reduced to simple monofactorial models
    corecore