5 research outputs found

    80% Valley Polarization of Free Carriers in Singly Oriented Single-Layer WS2 on Au(111)

    Get PDF
    We employ time- and angle-resolved photoemission spectroscopy to study the spin- and valley-selective photoexcitation and dynamics of free carriers at the K̄ and K̄′ points in singly oriented single-layer WS2/Au(111). Our results reveal that in the valence band maximum an ultimate valley polarization of free holes of 84% can be achieved upon excitation with circularly polarized light at room temperature. Notably, we observe a significantly smaller valley polarization for the photoexcited free electrons in the conduction band minimum. Clear differences in the carrier dynamics between electrons and holes imply intervalley scattering processes into dark states being responsible for the efficient depolarization of the excited electron population

    O UTJECAJU HRANIVA NA STVARANJE BILJNOG PRINOSA

    Get PDF
    The dynamics of excited electrons and holes in single layer (SL) MoS2 have so far been difficult to disentangle from the excitons that dominate the optical response of this material. Here, we use time- and angle-resolved photoemission spectroscopy for a SL of MoS2 on a metallic substrate to directly measure the excited free carriers. This allows us to ascertain a direct quasipartide band gap of 1.95 eV and determine an ultrafast (50 fs) extraction of excited free carriers via the metal in contact with the SL MoS2. This process is of key importance for optoelectronic applications that rely on separated free carriers rather than excitons

    Low Temperature Growth of Graphene on a Semiconductor

    Get PDF
    The industrial realization of graphene has so far been limited by challenges related to the quality, reproducibility, and high process temperatures required to manufacture graphene on suitable substrates. We demonstrate that epitaxial graphene can be grown on transition-metal-treated 6H-SiC(0001) surfaces, with an onset of graphitization starting around 450–500 °C. From the chemical reaction between SiC and thin films of Fe or Ru, sp3 carbon is liberated from the SiC crystal and converted to sp2 carbon at the surface. The quality of the graphene is demonstrated by using angle-resolved photoemission spectroscopy and low-energy electron diffraction. Furthermore, the orientation and placement of the graphene layers relative to the SiC substrate are verified by using angle-resolved absorption spectroscopy and energy-dependent photoelectron spectroscopy, respectively. With subsequent thermal treatments to higher temperatures, a steerable diffusion of the metal layers into the bulk SiC is achieved. The result is graphene supported on magnetic silicide or optionally, directly on semiconductor, at temperatures ideal for further large-scale processing into graphene-based device structures
    corecore