220 research outputs found
Valuing Transgenic Cotton Technologies Using a Risk/Return Framework
Stochastic Efficiency with Respect to a Function (SERF) is used to rank transgenic cotton technology groups and place an upper and lower bound on their value. Yield and production data from replicated plot experiments are used to build cumulative distribution functions of returns for nontransgenic, Roundup Ready, Bollgard, and stacked gene cotton cultivars. Analysis of Arkansas data indicated that the stacked gene and Roundup Ready technologies would be preferred by a large number of risk neutral and risk averse producers as long as the costs of the technology and seed are below the lower bounds calculated in this manuscript.cotton, financial risk, market value, SERF, transgenic, Agribusiness, Crop Production/Industries, Risk and Uncertainty, Q12, Q16,
PHANGS CO kinematics: disk orientations and rotation curves at 150 pc resolution
We present kinematic orientations and high resolution (150 pc) rotation
curves for 67 main sequence star-forming galaxies surveyed in CO (2-1) emission
by PHANGS-ALMA. Our measurements are based on the application of a new fitting
method tailored to CO velocity fields. Our approach identifies an optimal
global orientation as a way to reduce the impact of non-axisymmetric (bar and
spiral) features and the uneven spatial sampling characteristic of CO emission
in the inner regions of nearby galaxies. The method performs especially well
when applied to the large number of independent lines-of-sight contained in the
PHANGS CO velocity fields mapped at 1'' resolution. The high resolution
rotation curves fitted to these data are sensitive probes of mass distribution
in the inner regions of these galaxies. We use the inner slope as well as the
amplitude of our fitted rotation curves to demonstrate that CO is a reliable
global dynamical mass tracer. From the consistency between photometric
orientations from the literature and kinematic orientations determined with our
method, we infer that the shapes of stellar disks in the mass range of log()=9.0-10.9 probed by our sample are very close to circular
and have uniform thickness.Comment: 19 figures, 36 pages, accepted for publication in ApJ. Table of
PHANGS rotation curves available from http://phangs.org/dat
Enzyme kinetics and inhibition of histone acetyltransferase KAT8
Lysine acetyltransferase 8 (KAT8) is a histone acetyltransferase (HAT) responsible for acetylating lysine 16 on histone H4 (H4K16) and plays a role in cell cycle progression as well as acetylation of the tumor suppressor protein p53. Further studies on its biological function and drug discovery initiatives will benefit from the development of small molecule inhibitors for this enzyme. As a first step towards this aim we investigated the enzyme kinetics of this bi-substrate enzyme. The kinetic experiments indicate a ping-pong mechanism in which the enzyme binds Ac-CoA first, followed by binding of the histone substrate. This mechanism is supported by affinity measurements of both substrates using isothermal titration calorimetry (ITC). Using this information, the KAT8 inhibition of a focused compound collection around the non-selective HAT inhibitor anacardic acid has been investigated. Kinetic studies with anacardic acid were performed, based on which a model for the catalytic activity of KAT8 and the inhibitory action of anacardic acid (AA) was proposed. This enabled the calculation of the inhibition constant Ki of anacardic acid derivatives using an adaptation of the Cheng-Prusoff equation. The results described in this study give insight into the catalytic mechanism of KAT8 and present the first well-characterized small-molecule inhibitors for this HAT
Mapping electron temperature variations across a spiral arm in ngc 1672
We report one of the first extragalactic observations of electron temperature variations across a spiral arm. Using Multi Unit Spectroscopic Explorer mosaic observations of the nearby galaxy NGC 1672, we measure the [N ii]λ5755 auroral line in a sample of 80 H ii regions in the eastern spiral arm of NGC 1672. We discover systematic temperature variations as a function of distance perpendicular to the spiral arm. The electron temperature is lowest on the spiral arm itself and highest on the downstream side. Photoionization models of different metallicity, pressure, and age of the ionizing source are explored to understand what properties of the interstellar medium drive the observed temperature variations. An azimuthally varying metallicity appears to be the most likely cause of the temperature variations. The electron temperature measurements solidify recent discoveries of azimuthal variations of oxygen abundance based on strong lines, and rule out the possibility that the abundance variations are artifacts of the strong-line calibrations.This work is based on observations collected at the European
Organisation for Astronomical Research in the Southern
Hemisphere under ESO programme 1100.B-0651. J.M.D.K.
gratefully acknowledges funding from the German Research
Foundation (DFG) in the form of an Emmy Noether Research
Group (grant No. KR4801/1-1) and the DFG Sachbeihilfe
(grant No. KR4801/2-1). J.M.D.K. gratefully acknowledges
funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme via the ERC Starting Grant MUSTANG (grant
agreement No. 714907). F.B. acknowledges funding from the
European Union Horizon 2020 research and innovation
programme (grant agreement No. 726384). K.K. gratefully
acknowledges funding from the German Research Foundation
(DFG) in the form of an Emmy Noether Research Group (grant
number KR4598/2-1, PI: Kreckel)
Measuring the mixing scale of the ISM within nearby spiral galaxies
The spatial distribution of metals reflects, and can be used to constrain,
the processes of chemical enrichment and mixing. Using PHANGS-MUSE optical
integral field spectroscopy, we measure the gas phase oxygen abundances
(metallicities) across 7,138 HII regions in a sample of eight nearby disc
galaxies. In Paper I (Kreckel et al. 2019) we measure and report linear radial
gradients in the metallicities of each galaxy, and qualitatively searched for
azimuthal abundance variations. Here, we examine the two-dimensional variation
in abundances once the radial gradient is subtracted, Delta(O/H), in order to
quantify the homogeneity of the metal distribution and to measure the mixing
scale over which HII region metallicities are correlated. We observe low
(0.03--0.05 dex) scatter in Delta(O/H) globally in all galaxies, with
significantly lower (0.02--0.03 dex) scatter on small (<600 pc) spatial scales.
This is consistent with the measurement uncertainties, and implies the
two-dimensional metallicity distribution is highly correlated on scales of <600
pc. We compute the two point correlation function for metals in the disc in
order to quantify the scale lengths associated with the observed homogeneity.
This mixing scale is observed to correlate better with the local gas velocity
dispersion (of both cold and ionized gas) than with the star formation rate.
Selecting only HII regions with enhanced abundances relative to a linear radial
gradient, we do not observe increased homogeneity on small scales. This
suggests that the observed homogeneity is driven by the mixing introducing
material from large scales rather than by pollution from recent and on-going
star formation.Comment: 17 pages, 14 figures. Accepted for publication in MNRA
The lifecycle of molecular clouds in nearby star-forming disc galaxies
It remains a major challenge to derive a theory of cloud-scale (≲100 pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10−30 Myr, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities Σ_(H₂) ≥ 8 M_⊙ pc⁻², the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at Σ_(H₂) ≤ 8 M_⊙ pc⁻² GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just 1−5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H II regions are the fundamental units undergoing these lifecycles, with mean separations of 100−300 pc in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles
Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population
Using the PHANGS–ALMA CO(2–1) survey, we characterize molecular gas properties on ~100 pc scales across 102,778 independent sightlines in 70 nearby galaxies. This yields the best synthetic view of molecular gas properties on cloud scales across the local star-forming galaxy population obtained to date. Consistent with previous studies, we observe a wide range of molecular gas surface densities (3.4 dex), velocity dispersions (1.7 dex), and turbulent pressures (6.5 dex) across the galaxies in our sample. Under simplifying assumptions about subresolution gas structure, the inferred virial parameters suggest that the kinetic energy of the molecular gas typically exceeds its self-gravitational binding energy at ~100 pc scales by a modest factor (1.3 on average). We find that the cloud-scale surface density, velocity dispersion, and turbulent pressure (1) increase toward the inner parts of galaxies, (2) are exceptionally high in the centers of barred galaxies (where the gas also appears less gravitationally bound), and (3) are moderately higher in spiral arms than in inter-arm regions. The galaxy-wide averages of these gas properties also correlate with the integrated stellar mass, star formation rate, and offset from the star-forming main sequence of the host galaxies. These correlations persist even when we exclude regions with extraordinary gas properties in galaxy centers, which contribute significantly to the inter-galaxy variations. Our results provide key empirical constraints on the physical link between molecular cloud populations and their galactic environment
Differences in Clinical Features According to Boryoung and Karp Genotypes of Orientia tsutsugamushi
Scrub typhus is an infectious disease caused by Orientia tsutsugamushi. The differences in virulence of O. tsutsugamushi prototypes in humans are still unknown. We investigated whether there are any differences in the clinical features of the Boryoung and Karp genotypes.Patients infected with O. tsutsugamushi, as Boryoung and Karp clusters, who had visited 6 different hospitals in southwestern Korea were prospectively compared for clinical features, complications, laboratory parameters, and treatment responses. Infected patients in the Boryoung cluster had significantly more generalized weakness, eschars, skin rashes, conjunctival injection, high albumin levels, and greater ESR and fibrinogen levels compared to the Karp cluster. The treatment response to current antibiotics was significantly slower in the Karp cluster as compared to the Boryoung cluster.The frequency of occurrence of eschars and rashes may depend on the genotype of O. tsutsugamushi
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
- …