57 research outputs found

    More field-based carbon monitoring of tropical peatland restoration is urgently needed: findings from a systematic literature review

    Get PDF
    The tropical peatland degradation crisis in Southeast Asia has triggered a surge in peatland restoration activity to reduce carbon emissions caused by biological oxidation of dry peat and recurrent peat fires. Monitoring the effects of restoration activities on carbon cycling is essential. We conducted a systematic literature review to determine where, how and by whom field-based carbon monitoring of tropical peatland restoration is being conducted. Our search focused on rewetting, revegetation of native plant communities, and interventions to reduce fire. Despite tropical peatland restoration activities occurring since the early 2000s, published studies monitoring their carbon effects are extremely limited, both temporally and geographically; only nine studies met the criteria of our systematic search. Concentrated in Kalimantan and Sumatra (Indonesia) and Selangor (Malaysia), all except one of these studies were published in the last six years. Southeast Asian academic institutions, nonprofit organisations, government and the private sector are interconnected in generating this research through authorship and the provision and/or management of land. Monitoring activities are heavily focused on flux chamber measurements of peat surface carbon fluxes. Monitoring of revegetation and fire reduction is very limited, and establishment of pre-restoration baseline conditions is lacking. In the detected studies, reported monitoring periods extended to a maximum of two years. Standardised reporting of the spatial extent of restoration activities would assist comparisons of restoration outcomes. There is an urgent need for longer term, continuous studies investigating the carbon outcomes of tropical peatland restoration that transcend existing funding and political time constraints

    Land use change alters carbon composition and degree of decomposition of tropical peat soils

    Get PDF
    Drainage associated with land use change in tropical peatlands has increased the rate of decomposition of peat soils and contributed to CO2 emissions. Increased decomposition may result in changes in the composition of the soil organic carbon (SOC). We examined the carbon functional group composition and degree of decomposition of peat soils under five different land uses to understand the effects of changing management intensity on tropical peatland soils. Samples were collected from seven sites spanning five different land uses (forest, shrubland, fernland, revegetation, smallholder oil palm) at the Pedamaran peatland in South Sumatra, Indonesia. SOC composition, measured by Solid-state 13C Nuclear Magnetic Resonance (NMR) spectroscopy, was dominated by the alkyl carbon (C) functional group in managed peatlands. However, in the forest far from drainage canals, the SOC comprised predominantly O-alkyl C. The contributions of the functional groups ketone C, carbonyl C and O-aryl C were low and tended to occur in stable proportions throughout the soil profiles. Drainage and land use change significantly affected peat carbon chemistry. The effects were greatest under oil palm, where O-alkyl C had been depleted rapidly under aerobic conditions leading to a change in the dominant carbon functional group from O-alkyl C to alkyl C. Furthermore, our results indicate that the alkyl C:O-alkyl C ratio is a more useful and informative indicator of the degree of decomposition of peat soil than the traditionally used C:N ratio. This more nuanced understanding of the different types of carbon that make up tropical peat soils under different land uses can be applied to support peatland restoration. In particular, nutrient cycling and water availability are likely to be influenced by carbon functional group and degree of decomposition. In order to reduce fire risk and support Indonesia’s aspirations to manage the national forest estate as a net carbon sink, further research into the links between peat soil organic carbon chemistry, revegetation performance and new peat accumulation is recommended

    Unwinding Ariadne's Identity Thread: Privacy Risks with Fitness Trackers and Online Social Networks

    Get PDF
    The recent expansion of Internet of Things (IoT) and the growing trends towards a healthier lifestyle, have been followed by a proliferation in the use of fitness-trackers in our daily life. These wearable IoT devices combined with the extensive use by individuals of Online Social Networks (OSNs) have raised many security and privacy concerns. Individuals enrich the content of their online posts with their physical performance and attendance at sporting events, without considering the plausible risks that this may result in. This paper aims to examine the potential exposure of users' identity that is caused by information that they share online and personal data that are stored by their fitness-trackers. We approach the privacy concerns that arise by building an interactive tool. This tool models online information shared by individuals and elaborates on how they might be exposed to the unwanted leakage of further personal data. The tool also illustrates the privacy risks that arise from information that people expose, which could be exploited by malicious parties such as fraudsters, stalkers and other online and offline criminals. To understand the level of users' awareness concerning their identity exposure when engaging with such devices and online services, we also have conducted a qualitative analysis and present our findings here

    Social and Ecological Dimensions of Tropical Peatland Restoration: Foreword

    Get PDF
    Tropical peatlands in Indonesia have attracted international and domestic attention and concern in recent decades. Indonesian peatlands provide globally significant climate regulation and biodiversity provisioning ecosystem services and are central to the lives of local communities, yet they have undergone significant degradation via drainage and fire. There is a growing call for scientific knowledge of the social, environmental and practice dimensions of peatland restoration in Indonesia. This Special Volume of Mires and Peat is a collaborative effort by an Indonesian and Australian team of biophysical and social scientists to showcase primary research and systematic reviews that engage with the complexity of tropical peatland fire, conservation and restoration in Indonesia. We explore lives above ground (people and plants) and below ground (microbes, plants and the dynamic peat itself) and identify the following four themes that cut across the individual articles: 1) Livelihoods and land use; 2) Community engagement; 3) Bringing together multiple knowledges; and 4) Carbon; and draw out globally applicable lessons. We suggest that these themes highlight future directions for research which engage with the complexity of tropical peatland restoration in Indonesia, while centring the voices of local communities to support equity and sustainability in the transition to rewet peatlands

    Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century

    Get PDF
    Natural peatlands contribute significantly to global carbon sequestration and storage of biomass, most of which derives from Sphagnum peat mosses. Atmospheric CO2 levels have increased dramatically during the twentieth century, from 280 to > 400 ppm, which has affected plant carbon dynamics. Net carbon assimilation is strongly reduced by photorespiration, a process that depends on the CO2 to O-2 ratio. Here we investigate the response of the photorespiration to photosynthesis ratio in Sphagnum mosses to recent CO2 increases by comparing deuterium isotopomers of historical and contemporary Sphagnum tissues collected from 36 peat cores from five continents. Rising CO2 levels generally suppressed photorespiration relative to photosynthesis but the magnitude of suppression depended on the current water table depth. By estimating the changes in water table depth, temperature, and precipitation during the twentieth century, we excluded potential effects of these climate parameters on the observed isotopomer responses. Further, we showed that the photorespiration to photosynthesis ratio varied between Sphagnum subgenera, indicating differences in their photosynthetic capacity. The global suppression of photorespiration in Sphagnum suggests an increased net primary production potential in response to the ongoing rise in atmospheric CO2, in particular for mire structures with intermediate water table depths

    Community perceptions of peat rewetting in Tumbang Nusa Village, Indonesia

    Get PDF
    Indonesia is committed to rewetting peatlands to reduce the risk of fires and to decrease national greenhouse gas emissions. The three main approaches currently being implemented for rewetting peatlands in Indonesia are: 1) installing dams in drainage canals - “canal blocking”; 2) filling in drainage canals - “backfilling”; and 3) drilling wells to access water to fight fires - “deep wells”. Tumbang Nusa in Central Kalimantan was chosen in 2020 as a pilot village to trial fire management through rewetting, although some engineering and logistical questions remain. Peatland rewetting is a complex process, and it is essential to determine public support as well as the potential for communities to live and work with rewet peat landscapes. Community attitudes to rewetting and their involvement in the process are not well understood. This article reports on 20 interviews conducted with villagers in Tumbang Nusa about their perceptions of rewetting. It identifies that the general attitude to rewetting is positive, but there is confusion and a lack of involvement with regard to where deep wells have been drilled and where canal blocks are located, as well as how they work and can be used. Villagers are concerned about their livelihoods and the impacts of fire. To support communities where rewetting will occur, careful management of the physical processes is needed, but even more important is the need for greater involvement of local communities in actively developing possibilities for their own futures on rewet peat

    Identifying a shared vision for peatland restoration: adapting the Delphi method to enhance collaboration

    Get PDF
    In this article we propose and apply a methodology for collaboratively creating and reaching agreement over a shared vision for peatland restoration. The purpose is to identify a shared understanding of the various parts of a just, inclusive and sustainable restored peatland as well as productive tensions between and across divergent disciplinary domains focused on peatland restoration. We involved an interdisciplinary group of researchers and practitioners working on various aspects of tropical peatland restoration and management in Indonesia, where there is a recognised need for clearer goals and/or definitions of restoration outcomes to focus manifold stakeholder efforts. To increase opportunities for participation and interaction between participants, our methodology built on and adapted a well-established Delphi survey method by combining it with focus group discussions. This allowed multiple points of view to be considered and new knowledge to emerge. The vision produced through this process bridges across different disciplinary tensions to fulfil ecological and social outcomes. While the vision is specific to the complex political economic and socio-ecological context of Indonesia’s tropical peatland, the phased methodology for collaborative visioning can be adapted for application to other social ecological challenges, or to guide planning and practice by other stakeholder groups aiming to articulate a desired future state

    A global perspective on soil science education at third educational level; knowledge, practice, skills and challenges

    Get PDF
    The pivotal role of soil as a resource is not fully appreciated by the general public. Improving education in soil science represents a challenge in a world where soil resources are under serious threat. Today’s high school students, the world’s future landowners, agriculturalists, and decision makers, have the potential to change society’s apathy towards soils issues. This research aimed to compare the level of soil education in high and/or secondary schools in forty-three countries worldwide, together comprising 62% of the world's population. Comparisons were made between soil science content discussed in educationally appropriate textbooks via a newly proposed soil information coefficient (SIC). Interviews with teachers were undertaken to better understand how soil science education is implemented in the classroom. Statistical analyses were investigated using clustering. Results showed that gaps in soil science education were most commonly observed in countries where soil science is a non-compulsory or optional subject. Soil science concepts are predominantly a part of geography or environmental science curricula. Consequently, considerable variability in soil science education systems among investigated countries exists. Soil information coefficient‘s outcomes demonstrated that a methodological approach combining textbooks and the use of modern digitally based strategies in the educational process significantly improved soil education performances. Overall, soil science education is under-represented in schools worldwide. Dynamic new approaches are needed to improve pivotal issues such as: i) promoting collaborations and agreements between high school and universities; ii) encouraging workshops and practical exercises such as field activities; and, iii) implementing technology tools. This, in turn, will prepare the next generation to contribute meaningfully towards solving present and future soil problems

    Variation in carbon and nitrogen concentrations among peatland categories at the global scale

    Get PDF
    Publisher Copyright: © 2022 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.Peer reviewe
    corecore