1,899 research outputs found

    A non-adiabatic approach to entanglement distribution over long distances

    Full text link
    Entanglement distribution between trapped-atom quantum memories, viz. single atoms in optical cavities, is addressed. In most scenarios, the rate of entanglement distribution depends on the efficiency with which the state of traveling single photons can be transferred to trapped atoms. This loading efficiency is analytically studied for two-level, VV-level, Λ\Lambda-level, and double-Λ\Lambda-level atomic configurations by means of a system-reservoir approach. An off-resonant non-adiabatic approach to loading Λ\Lambda-level trapped-atom memories is proposed, and the ensuing trade-offs between the atom-light coupling rate and input photon bandwidth for achieving a high loading probability are identified. The non-adiabatic approach allows a broad class of optical sources to be used, and in some cases it provides a higher system throughput than what can be achieved by adiabatic loading mechanisms. The analysis is extended to the case of two double-Λ\Lambda trapped-atom memories illuminated by a polarization-entangled biphoton.Comment: 15 pages, 15 figure

    Emergence of supersymmetry on the surface of three dimensional topological insulators

    Full text link
    We propose two possible experimental realizations of a 2+1 dimensional spacetime supersymmetry at a quantum critical point on the surface of three dimensional topological insulators. The quantum critical point between the semi-metallic state with one Dirac fermion and the s-wave superconducting state on the surface is described by a supersymmetric conformal field theory within ϵ\epsilon-expansion. We predict the exact voltage dependence of the differential conductance at the supersymmetric critical point.Comment: 8 pages, 2 figures; published versio

    Quantum error correction of coherent errors by randomization

    Full text link
    A general error correction method is presented which is capable of correcting coherent errors originating from static residual inter-qubit couplings in a quantum computer. It is based on a randomization of static imperfections in a many-qubit system by the repeated application of Pauli operators which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates coherent errors produced by static imperfections and increases significantly the maximum time over which realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy so that all physical qubits involved can be used for logical purposes.Comment: revtex 4 pages, 3 fig

    Equivalent qubit dynamics under classical and quantum noise

    Full text link
    We study the dynamics of quantum systems under classical and quantum noise, focusing on decoherence in qubit systems. Classical noise is described by a random process leading to a stochastic temporal evolution of a closed quantum system, whereas quantum noise originates from the coupling of the microscopic quantum system to its macroscopic environment. We derive deterministic master equations describing the average evolution of the quantum system under classical continuous-time Markovian noise and two sets of master equations under quantum noise. Strikingly, these three equations of motion are shown to be equivalent in the case of classical random telegraph noise and proper quantum environments. Hence fully quantum-mechanical models within the Born approximation can be mapped to a quantum system under classical noise. Furthermore, we apply the derived equations together with pulse optimization techniques to achieve high-fidelity one-qubit operations under random telegraph noise, and hence fight decoherence in these systems of great practical interest.Comment: 5 pages, 2 figures; converted to PRA format, added Fig. 2, corrected typo

    Characterization of the Impingement Dynamics of Pulsed Rocket Plumes with the Ground at Low Ambient Pressure

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76629/1/AIAA-2007-5707-681.pd

    Reports on the Flora of Ohio. I, Notes on the Ohio Violets with Additions to the State Flora

    Get PDF
    Author Institution: Oberlin Colleg

    Note and Comment

    Get PDF
    Taxation - Internal Revenue Act - Under the federal Revenue Act of i921 the taxable profit or deductible loss on sales of stock, bonds and other property is the actual profit or loss, if the purchase was after February I, 1913. Act, § 2o2 (a). The tax payer (other than a corporation) may, however, at his option, pay a flat tax of 1232% on his profit, provided he has held the property more than two years, and provided further that he first deducts losses on other property, and provided further, that his total tax is at least 1232% of his total net income. See Act, § 206

    Approximate quantum counting on an NMR ensemble quantum computer

    Full text link
    We demonstrate the implementation of a quantum algorithm for estimating the number of matching items in a search operation using a two qubit nuclear magnetic resonance (NMR) quantum computer.Comment: 4 pages LaTeX/RevTex including 4 figures (3 LaTeX, 1 PostScript). Submitted to Physical Review Letter

    Quantum Portfolios

    Get PDF
    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can only find the solution of hard problems probabilistically. Thus the efficiency of the algorithms has to be characterized both by the expected time to completion {\it and} the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-SAT.Comment: revision includes additional data and corrects minor typo

    Molecular Dynamics Simulations of Biotin Carboxylase

    Full text link
    • …
    corecore