78 research outputs found

    Effects and Mechanisms of Cognitive, Aerobic Exercise, and Combined Training on Cognition, Health, and Brain Outcomes in Physically Inactive Older Adults : The Projecte Moviment Protocol

    Get PDF
    Altres ajuts: It has also been rewarded with three pre-doctoral fellowships ( FPU014/01460, FI-2016, and FI-2018).Introduction: Age-related health, brain, and cognitive impairment is a great challenge in current society. Cognitive training, aerobic exercise and their combination have been shown to benefit health, brain, cognition and psychological status in healthy older adults. Inconsistent results across studies may be related to several variables. We need to better identify cognitive changes, individual variables that may predict the effect of these interventions, and changes in structural and functional brain outcomes as well as physiological molecular correlates that may be mediating these effects. Projecte Moviment is a multi-domain randomized trial examining the effect of these interventions applied 5 days per week for 3 months compared to a passive control group. The aim of this paper is to describe the sample, procedures and planned analyses. Methods: One hundred and forty healthy physically inactive older adults will be randomly assigned to computerized cognitive training (CCT), aerobic exercise (AE), combined training (COMB), or a control group. The intervention consists of a 3 month home-based program 5 days per week in sessions of 45 min. Data from cognitive, physical, and psychological tests, cardiovascular risk factors, structural and functional brain scans, and blood samples will be obtained before and after the intervention. Results: Effects of the interventions on cognitive outcomes will be described in intention-to-treat and per protocol analyses. We will also analyze potential genetic, demographic, brain, and physiological molecular correlates that may predict the effects of intervention, as well as the association between cognitive effects and changes in these variables using the per protocol sample. Discussion: Projecte Moviment is a multi-domain intervention trial based on prior evidence that aims to understand the effects of CCT, AE, and COMB on cognitive and psychological outcomes compared to a passive control group, and to determine related biological correlates and predictors of the intervention effects. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03123900

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    The On-orbit Calibrations for the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope began its on--orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch

    Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women

    Get PDF
    Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1p = 4 × 10−17), arthritis (GDF5p = 4 × 10−13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing

    Mapping and characterization of structural variation in 17,795 human genomes

    Get PDF
    A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing

    The spectral energy distribution of fermi bright blazars

    Get PDF
    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν Fν representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, αro, and optical to X-ray, αox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (νSpeak) is positioned between 1012.5 and 1014.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 1017 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between νSpeak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars. © 2010 The American Astronomical Society

    Effects of DNA strand breaks on transcription by RNA polymerase III: Insights into the role of TFIIIB and the polarity of promoter opening

    No full text
    Certain deletion mutants of the Brf1 and Bdp1 subunits of transcription factor (TF) IIIB retain the ability to recruit RNA polymerase (pol) III to its promoters, but fail to support promoter opening: deletions within an internal Bdp1 segment interfere with initiation of DNA strand separation, and an N-terminal Brf1 deletion blocks propagation of promoter opening past the transcriptional start site. The ability of DNA strand breaks to restore pol III transcription activity to these defective TFIIIB assemblies has been analyzed using U6 snRNA gene constructs. Breaks in a 21 bp segment spanning the transcriptional start rescue transcription in DNA strand-specific and subunit/mutation-specific patterns. A cluster of Bdp1 internal deletions also reverses the inactivation of transcription with wild-type TFIIIB generated by certain transcribed (template) strand breaks near the transcriptional start site. A structure-based model and topological considerations interpret these observations, explain how Bdp1 and Brf1 help to enforce the general upstream→ downstream polarity of promoter opening and specify requirements for polarity reversal

    Higher cardiorespiratory fitness is associated with reduced functional brain connectivity during performance of the stroop task

    Get PDF
    Background: Although higher cardiorespiratory fitness (CRF) has been linked to better executive function, the mechanisms by which this occurs remain a matter of speculation. One hypothesis is that higher CRF is associated with elevated top-down control in which brain regions processing task-relevant information are up-regulated and brain regions processing task-irrelevant information are down-regulated. Methods: We tested this top-down hypothesis in 50 young adults (μ age = 25.22 ± 5.17 years) by measuring CRF via a graded maximal exercise test and performing functional Magnetic Resonance Imaging (fMRI) during a color-word Stroop task. We used task-evoked functional connectivity, quantified from a psychophysiological interaction analysis (PPI), to test our hypotheses that (a) higher CRF would be associated with greater connectivity between control centers (i.e., prefrontal and parietal areas) and visual feature centers (i.e., occipital areas) that are involved with processing task-relevant stimulus dimensions (i.e., color), and (b) higher CRF would be associated with lower connectivity between control centers and visual feature centers that are involved with processing task-irrelevant dimensions of the stimuli (i.e., word processing areas). Results: Controlling for sex and BMI, we found, consistent with our second hypothesis, that higher CRF was associated with reduced functional connectivity between parietal and occipital areas involved in the task-irrelevant dimension of the task (i.e., word form areas). There were no associations between CRF and functional connectivity with the prefrontal cortex or evidence of heightened connectivity between attentional control and visual feature centers. Conclusions: These results suggest that CRF associations with executive functioning might be explained by CRF-mediated differences between brain regions involved with attentional control (parietal regions) and the down-regulation of regions involved with processing task-irrelevant stimulus features (occipital regions)

    The RNA polymerase III-recruiting factor TFIIIB induces a DNA bend between the TATA box and the transcriptional start site

    No full text
    TFIIIB, the RNA polymerase III-recruiting factor of Saccharomyces cerevisiae, may be assembled upstream of the transcriptional start site, either through the interaction of its constituent TATA-binding protein (TBP) with a strong TATA-box, or by means of the multi-subunit assembly factor, TFIIIC. Missing nucleoside interference analysis of TFIIIC-dependent TFIIIB-DNA complex formation revealed enhanced complex formation at 0°C when the DNA is missing nucleosides in two broad 7-10 bp regions centered around base-pairs -17 and -3 relative to the transcriptional start site; no effect of missing nucleosides was evident at 20°C. The implication of these results for required DNA flexure in TFIIIC-mediated TFIIIB-DNA complex formation was pursued in a TFIIIC-independent context, using DNA with a suboptimal 6 bp TATA box (TATAAA). A unique missing nucleoside at the downstream end of the TATA box, corresponding to the position of one of two TBP-mediated DNA kinks, significantly enhances TBP-DNA complex formation. In contrast, TFIIIB displays a broad preference for missing nucleosides within an ~ 15 by region immediately downstream of the TATA box. Consecutive mismatches (4-nt loops), either at the sites of TBP-mediated DNA kinking at both ends of the TATA box or within the identified region where missing nucleosides promote TFIIIB-DNA complex formation, also result in enhanced and specific TFIIIB assembly; 4-nt loops further downstream do not lead to preferential placement of TFIIIB. We conclude that TFIIIB induces an additional DNA deformation between the TATA box and the start site of transcription that is likely to be more extended than the sharp kinks generated by TBP
    • …
    corecore