408 research outputs found
Lumpability for Uncertain Continuous-Time Markov Chains
The assumption of perfect knowledge of rate parameters in continuous-time Markov chains (CTMCs) is undermined when confronted with reality, where they may be uncertain due to lack of information or because of measurement noise. In this paper we consider uncertain CTMCs, where rates are assumed to vary non-deterministically with time from bounded continuous intervals. This leads to a semantics which associates each state with the reachable set of its probability under all possible choices of the uncertain rates. We develop a notion of lumpability which identifies a partition of states where each block preserves the reachable set of the sum of its probabilities, essentially lifting the well-known CTMC ordinary lumpability to the uncertain setting. We proceed with this analogy with two further contributions: a logical characterization of uncertain CTMC lumping in terms of continuous stochastic logic; and a polynomial time and space algorithm for the minimization of uncertain CTMCs by partition refinement, using the CTMC lumping algorithm as an inner step. As a case study, we show that the minimizations in a substantial number of CTMC models reported in the literature are robust with respect to uncertainties around their original, fixed, rate values
ΠΡΡΡΡΠΉ ΠΈΠ½ΡΠ°ΡΠΊΡ ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°: Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠ° Ρ Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ
Emergency Department and Cardiac Rhythm Disorders, Institute of Cardiology, Π‘hisinauThe effects of Mildronate used along with basic acute myocardial infarction (AMI) therapy on the clinical, electrocardiographic and echocardiographic
parameters of AMI patients (pts) were studied. Material and methods. The study enrolled 60 pts with AMI: 35 pts in the study group I, and 25 in the control
group II. Besides the basic AMI treatment according to the respective National Protocol, group I subjects received Mildronate 1.0 gr/day by i/v perfusion for the
first 7 days, then orally in tablets for the next 6 weeks. Blood pressure, cardiac rhythm, clinical and ECG signs of myocardial ischemia, manifestations of heart
failure, ECG and EchoCG changes, and patientsβ exercise capacity were evaluated. Results. Ptsin group I less frequently developed ventricular tachyarrhythmia,
ventricular extrasistolia, atrial fibrillation, recurrent myocardial ischemia and showed in a smaller proportion in hospital progression for heart failure. Faster
changes of the ST segment towards the isoelectric line, a positive evolution of the left ventricle size, improvement of the regional wall kinetics and a better exercise
capacity by a 6 minute walk test were determined in pts treated with Mildronate. No adverse reactions during the treatment with Mildronate were observed.
Conclusions. Use of Mildronate along with basic acute myocardial infarction treatment showed a positive effect on the echocardiografic post-infarct changes
of the left ventricle and a favorable influence on the patientβs clinical situation and their exercise capacity.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΡΡΡΠ΅ΠΊΡΡ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠ° ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° (ΠΠΠ) Π½Π°
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΠ»Π΅ΠΊΡΡΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΡ
ΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠΠ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠΈΠ»ΠΈ 60
Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠΠ: 35 β Π² ΠΎΡΠ½ΠΎΠ²Π½ΡΡ, I Π³ΡΡΠΏΠΏΡ ΠΈ 25 β Π²ΠΎ II Π³ΡΡΠΏΠΏΡ, ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ. ΠΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΠΠ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΠΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌΡ
ΠΡΠΎΡΠΎΠΊΠΎΠ»Ρ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π±ΠΎΠ»ΡΠ½ΡΠ΅ I Π³ΡΡΠΏΠΏΡ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°Ρ ΠΏΠΎ 1 Π³Ρ/Π΄Π΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ Π²/Π² Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΡ
7 Π΄Π½Π΅ΠΉ, Π·Π°ΡΠ΅ΠΌ Π² ΡΠ°Π±Π»Π΅ΡΠΊΠ°Ρ
Π΄ΠΎ 6 Π½Π΅Π΄Π΅Π»Ρ. ΠΠ·ΡΡΠ°Π»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ, ΡΠ°ΡΡΠΎΡΡ ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠΌΠ°, ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΠΠ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΈΡΠ΅ΠΌΠΈΠΈ
ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°, ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ, Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΠΠΠ ΠΈ ΠΡ
ΠΎΠΠ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, ΡΠΎΠ»Π΅ΡΠ°Π½ΡΠ½ΠΎΡΡΡ ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ΅. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ.
Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² I Π³ΡΡΠΏΠΏΡ ΡΠ΅ΠΆΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠΎΠ²ΡΠ΅ ΡΠ°Ρ
ΠΈΠ°ΡΠΈΡΠΌΠΈΠΈ ΠΈ ΡΠΊΡΡΡΠ°ΡΠΈΡΡΠΎΠ»ΠΈΡ, ΠΏΡΠΈΡΡΡΠΏΡ ΠΌΠ΅ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π°ΡΠΈΡΠΌΠΈΠΈ, ΡΠΏΠΈΠ·ΠΎΠ΄Ρ ΠΈΡΠ΅ΠΌΠΈΠΈ
ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°, ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ Π·Π° Π²ΡΠ΅ΠΌΡ Π³ΠΎΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. Π ΡΡΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ Π±ΡΡΡΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°
ST, ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ²ΠΎΠ»ΡΡΠΈΡ ΡΡ
ΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π³ΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΡΡΠΈ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠ°, ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅
ΡΠΎΠ»Π΅ΡΠ°Π½ΡΠ½ΠΎΡΡΠΈ ΠΊ Π½Π°Π³ΡΡΠ·ΠΊΠ΅ ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠ΅ΡΡΠ° Ρ
ΠΎΠ΄ΡΠ±Ρ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 6 ΠΌΠΈΠ½ΡΡ. Π’Π΅ΡΠ°ΠΏΠΈΡ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠΎΠΌ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΠ»Π°ΡΡ Ρ
ΠΎΡΠΎΡΠΎ, ΠΏΠΎΠ±ΠΎΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ Π½Π΅
Π±ΡΠ»ΠΎ Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΎ. ΠΡΠ²ΠΎΠ΄Ρ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠ° Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°
ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π½Π° ΠΏΠΎΡΡΠΈΠ½ΡΠ°ΡΠΊΡΠ½ΡΠ΅ ΡΡ
ΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠ°, ΠΈΠΌΠ΅Π»ΠΎ Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΠΎΠ΅
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΈ Π½Π° ΡΠΎΠ»Π΅ΡΠ°Π½ΡΠ½ΠΎΡΡΡ ΠΊ Π½Π°Π³ΡΡΠ·ΠΊΠ΅
ΠΡΡΡΡΠΉ ΠΈΠ½ΡΠ°ΡΠΊΡ ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°: Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠ° Ρ Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ
Emergency Department and Cardiac Rhythm Disorders, Institute of Cardiology, Π‘hisinau, Congresul III al Medicilor de Familie din Republica Moldova, 17β18 mai, 2012, ChiΕinΔu, Republica Moldova, ConferinΕ£a NaΕ£ionalΔ βMaladii bronhoobstructive la copiiβ, consacratΔ profesorului universitar, doctor habilitat Victor GheΕ£eul, 27 aprilie, ChiΕinΔu, Republica MoldovaThe effects of Mildronate used along with basic acute myocardial infarction (AMI) therapy on the clinical, electrocardiographic and echocardiographic
parameters of AMI patients (pts) were studied. Material and methods. The study enrolled 60 pts with AMI: 35 pts in the study group I, and 25 in the control
group II. Besides the basic AMI treatment according to the respective National Protocol, group I subjects received Mildronate 1.0 gr/day by i/v perfusion for the
first 7 days, then orally in tablets for the next 6 weeks. Blood pressure, cardiac rhythm, clinical and ECG signs of myocardial ischemia, manifestations of heart
failure, ECG and EchoCG changes, and patientsβ exercise capacity were evaluated. Results. Ptsin group I less frequently developed ventricular tachyarrhythmia,
ventricular extrasistolia, atrial fibrillation, recurrent myocardial ischemia and showed in a smaller proportion in hospital progression for heart failure. Faster
changes of the ST segment towards the isoelectric line, a positive evolution of the left ventricle size, improvement of the regional wall kinetics and a better exercise
capacity by a 6 minute walk test were determined in pts treated with Mildronate. No adverse reactions during the treatment with Mildronate were observed.
Conclusions. Use of Mildronate along with basic acute myocardial infarction treatment showed a positive effect on the echocardiografic post-infarct changes
of the left ventricle and a favorable influence on the patientβs clinical situation and their exercise capacity.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΡΡΡΠ΅ΠΊΡΡ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠ° ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° (ΠΠΠ) Π½Π°
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΠ»Π΅ΠΊΡΡΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΡ
ΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠΠ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠΈΠ»ΠΈ 60
Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠΠ: 35 β Π² ΠΎΡΠ½ΠΎΠ²Π½ΡΡ, I Π³ΡΡΠΏΠΏΡ ΠΈ 25 β Π²ΠΎ II Π³ΡΡΠΏΠΏΡ, ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ. ΠΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΠΠ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΠΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌΡ
ΠΡΠΎΡΠΎΠΊΠΎΠ»Ρ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π±ΠΎΠ»ΡΠ½ΡΠ΅ I Π³ΡΡΠΏΠΏΡ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°Ρ ΠΏΠΎ 1 Π³Ρ/Π΄Π΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ Π²/Π² Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΡ
7 Π΄Π½Π΅ΠΉ, Π·Π°ΡΠ΅ΠΌ Π² ΡΠ°Π±Π»Π΅ΡΠΊΠ°Ρ
Π΄ΠΎ 6 Π½Π΅Π΄Π΅Π»Ρ. ΠΠ·ΡΡΠ°Π»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ, ΡΠ°ΡΡΠΎΡΡ ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠΌΠ°, ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΠΠ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΈΡΠ΅ΠΌΠΈΠΈ
ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°, ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ, Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΠΠΠ ΠΈ ΠΡ
ΠΎΠΠ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, ΡΠΎΠ»Π΅ΡΠ°Π½ΡΠ½ΠΎΡΡΡ ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ΅. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ.
Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² I Π³ΡΡΠΏΠΏΡ ΡΠ΅ΠΆΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠΎΠ²ΡΠ΅ ΡΠ°Ρ
ΠΈΠ°ΡΠΈΡΠΌΠΈΠΈ ΠΈ ΡΠΊΡΡΡΠ°ΡΠΈΡΡΠΎΠ»ΠΈΡ, ΠΏΡΠΈΡΡΡΠΏΡ ΠΌΠ΅ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π°ΡΠΈΡΠΌΠΈΠΈ, ΡΠΏΠΈΠ·ΠΎΠ΄Ρ ΠΈΡΠ΅ΠΌΠΈΠΈ
ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°, ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ Π·Π° Π²ΡΠ΅ΠΌΡ Π³ΠΎΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. Π ΡΡΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ Π±ΡΡΡΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°
ST, ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ²ΠΎΠ»ΡΡΠΈΡ ΡΡ
ΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π³ΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΡΡΠΈ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠ°, ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅
ΡΠΎΠ»Π΅ΡΠ°Π½ΡΠ½ΠΎΡΡΠΈ ΠΊ Π½Π°Π³ΡΡΠ·ΠΊΠ΅ ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠ΅ΡΡΠ° Ρ
ΠΎΠ΄ΡΠ±Ρ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 6 ΠΌΠΈΠ½ΡΡ. Π’Π΅ΡΠ°ΠΏΠΈΡ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠΎΠΌ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΠ»Π°ΡΡ Ρ
ΠΎΡΠΎΡΠΎ, ΠΏΠΎΠ±ΠΎΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ Π½Π΅
Π±ΡΠ»ΠΎ Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΎ. ΠΡΠ²ΠΎΠ΄Ρ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠΈΠ»Π΄ΡΠΎΠ½Π°ΡΠ° Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°
ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π½Π° ΠΏΠΎΡΡΠΈΠ½ΡΠ°ΡΠΊΡΠ½ΡΠ΅ ΡΡ
ΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠ°, ΠΈΠΌΠ΅Π»ΠΎ Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΠΎΠ΅
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΈ Π½Π° ΡΠΎΠ»Π΅ΡΠ°Π½ΡΠ½ΠΎΡΡΡ ΠΊ Π½Π°Π³ΡΡΠ·ΠΊΠ΅
Approximate probabilistic verification of hybrid systems
Hybrid systems whose mode dynamics are governed by non-linear ordinary
differential equations (ODEs) are often a natural model for biological
processes. However such models are difficult to analyze. To address this, we
develop a probabilistic analysis method by approximating the mode transitions
as stochastic events. We assume that the probability of making a mode
transition is proportional to the measure of the set of pairs of time points
and value states at which the mode transition is enabled. To ensure a sound
mathematical basis, we impose a natural continuity property on the non-linear
ODEs. We also assume that the states of the system are observed at discrete
time points but that the mode transitions may take place at any time between
two successive discrete time points. This leads to a discrete time Markov chain
as a probabilistic approximation of the hybrid system. We then show that for
BLTL (bounded linear time temporal logic) specifications the hybrid system
meets a specification iff its Markov chain approximation meets the same
specification with probability . Based on this, we formulate a sequential
hypothesis testing procedure for verifying -approximately- that the Markov
chain meets a BLTL specification with high probability. Our case studies on
cardiac cell dynamics and the circadian rhythm indicate that our scheme can be
applied in a number of realistic settings
Electron-fluctuation interaction in a non-Fermi superconductor
We studied the influence of the amplitude fluctuations of a non-Fermi
superconductor on the energy spectrum of the 2D Anderson non-Fermi system. The
classical fluctuations give a temperature dependence in the pseudogap induced
in the fermionic excitations.Comment: revtex fil
Π£ΡΠΎΠ²Π΅Π½Ρ Π³Π»ΡΠΊΠΎΠ·Ρ ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ Ρ ΠΎΡΡΡΡΠΌ ΠΈΠ½ΡΠ°ΡΠΊΡΠΎΠΌ ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° ΠΈ Π±Π΅Π· ΡΠ°Ρ Π°ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°Π±Π΅ΡΠ°: ΠΏΡΠΎΠ³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
Department of Emergency and Cardiac Rhythm Disorders, Institute of Cardiology, Chisinau, Congresul III al Medicilor de Familie din Republica Moldova, 17β18 mai, 2012, ChiΕinΔu, Republica Moldova, ConferinΕ£a NaΕ£ionalΔ βMaladii bronhoobstructive la copiiβ, consacratΔ profesorului universitar, doctor habilitat Victor GheΕ£eul, 27 aprilie, ChiΕinΔu, Republica MoldovaAims. Hyperglycemia (HG) is common among patients with acute myocardial infarction (AMI) and is associated with high risk of mortality and
morbidity. The aim of this study was to investigate the relationship between admission plasma glucose level and AMI outcomes in patients without diabetes
(DM). Materials and results. 224 consecutive AMI patients without DM were included in the study. Patients were stratified into 4 groups (Gr) defined
by admission plasma glucose: Gr1 β 11 mmol/l. The mean follow-up was 26
Β± 6 months. Patients with HG were older and more often female. More frequently, at admission, they presented with atypical symptoms, ventricular
arrhythmias, in Killip class > 2, developed more often Q wave AMI (p < 0.05), reduced EF% (p < 0.05), progression of heart failure. HG was associated
in nondiabetics with increased in-hospital morbidity and mortality (p < 0.0001). Long-term mortality didnβt differ among the groups, but survival term
was lower in subjects with HG on admission. Conclusion. Hiperglycaemia on admission could identify high risk AMI patients and is associated with
high risk of mortality and morbidity among subjects without diabetes.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΡΡΠΎΠ²Π½Ρ Π³Π»ΡΠΊΠΎΠ·Ρ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΠΈ (Π£ΠΠ) ΠΈ ΠΈΡΡ
ΠΎΠ΄ΠΎΠ² ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° (ΠΠΠ) Ρ
Π±ΠΎΠ»ΡΠ½ΡΡ
Π±Π΅Π· ΡΠ°Ρ
Π°ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°Π±Π΅ΡΠ° (Π‘Π). ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠΈΠ»ΠΈ 224 Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΠΠ Π±Π΅Π· Π‘Π. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π£ΠΠ Π±ΠΎΠ»ΡΠ½ΡΡ
ΡΠ°Π·Π΄Π΅Π»ΠΈΠ»ΠΈ Π½Π° 4 Π³ΡΡΠΏΠΏΡ: I Π³Ρ. β 11,0 ΠΌΠΌΠΎΠ»/Π». ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ
ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 26 Β± 6 ΠΌΠ΅ΡΡΡΠ΅Π². ΠΠΈΡΠ° Ρ Π³ΠΈΠΏΠ΅ΡΠ³Π»ΠΈΠΊΠ΅ΠΌΠΈΠ΅ΠΉ (ΠΠ) ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΠΈ Π±ΡΠ»ΠΈ ΡΡΠ°ΡΡΠ΅ ΠΈ ΡΠ°ΡΠ΅ ΠΆΠ΅Π½ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Π°. ΠΠ°ΡΠΈΠ΅Π½ΡΡ Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΌ Π£ΠΠ
ΡΠ°ΡΠ΅ ΠΈΠΌΠ΅Π»ΠΈ Π°ΡΠΈΠΏΠΈΡΠ½ΡΡ ΠΊΠ»ΠΈΠ½ΠΈΠΊΡ, ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ > 2 ΠΊΠ»Π°ΡΡΠ° ΠΏΠΎ Killip, ΠΠΠ Ρ Π·ΡΠ±ΡΠΎΠΌ Q (p < 0,05), ΡΠ½ΠΈΠΆΠ΅Π½Π½ΡΡ Π€Π% (p <
0,05), ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ Π·Π° Π²ΡΠ΅ΠΌΡ Π³ΠΎΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. Π£ Π±ΠΎΠ»ΡΠ½ΡΡ
Π±Π΅Π· Π‘Π Ρ ΠΠ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΠΈ Π±ΡΠ»Π° ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° ΡΠ°ΠΌΠ°Ρ
Π²ΡΡΠΎΠΊΠ°Ρ Π²Π½ΡΡΡΠΈΠ±ΠΎΠ»ΡΠ½ΠΈΡΠ½Π°Ρ ΡΠΌΠ΅ΡΡΠ½ΠΎΡΡΡ. Π‘ΠΌΠ΅ΡΡΠ½ΠΎΡΡΡ ΠΏΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΈ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°Π»Π°ΡΡ Π² ΠΈΠ·ΡΡΠ°Π΅ΠΌΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
. ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΈΠΏΠ΅ΡΠ³Π»ΠΈΠΊΠ΅ΠΌΠΈΡ
ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠΌ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π° ΠΈ Π°ΡΡΠΎΡΠΈΠΈΡΡΠ΅ΡΡΡ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΈΡΠΊΠΎΠΌ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠΌΠ΅ΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ
ΠΈΡΡ
ΠΎΠ΄Π° ΠΠΠ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Π±Π΅Π· Π‘Π
Ginzburg-Landau Expansion in Non-Fermi Liquid Superconductors: Effect of the Mass Renormalization Factor
We reconsider the Ginzburg-Landau expansion for the case of a non-Fermi
liquid superconductor. We obtain analytical results for the Ginzburg-Landau
functional in the critical region around the superconducting phase transition,
T <= T_c, in two special limits of the model, i.e., the spin-charge separation
case and the anomalous Fermi liquid case. For both cases, in the presence of a
mass renormalization factor, we derived the form and the specific dependence of
the coherence length, penetration depth, specific heat jump at the critical
point, and the magnetic upper critical field. For both limits the obtained
results reduce to the usual BCS results for a two dimensional s-wave
superconductor. We compare our results with recent and relevant theoretical
work. The results for a d--wave symmetry order parameter do not change
qualitatively the results presented in this paper. Only numerical factors
appear additionally in our expressions.Comment: accepted for publication in Physical Review
On the sequential massart algorithm for statistical model checking
Several schemes have been provided in Statistical Model Checking (SMC) for the estimation of property occurrence based on predefined confidence and absolute or relative error. Simulations might be however costly if many samples are required and the usual algorithms implemented in statistical model checkers tend to be conservative. Bayesian and rare event techniques can be used to reduce the sample size but they can not be applied without prerequisite or knowledge about the system under scrutiny. Recently, sequential algorithms based on Monte Carlo estimations and Massart bounds have been proposed to reduce the sample size while providing guarantees on error bounds which has been shown to outperform alternative frequentist approaches [15]. In this work, we discuss some features regarding the distribution and the optimisation of these algorithms.No Full Tex
- β¦