3,169 research outputs found

    Break-up fragment topology in statistical multifragmentation models

    Full text link
    Break-up fragmentation patterns together with kinetic and configurational energy fluctuations are investigated in the framework of a microcanonical model with fragment degrees of freedom over a broad excitation energy range. As far as fragment partitioning is approximately preserved, energy fluctuations are found to be rather insensitive to both the way in which the freeze-out volume is constrained and the trajectory followed by the system in the excitation energy - freeze-out volume space. Due to hard-core repulsion, the freeze-out volume is found to be populated un-uniformly, its highly depleted core giving the source a bubble-like structure. The most probable localization of the largest fragments in the freeze-out volume may be inferred experimentally from their kinematic properties, largely dictated by Coulomb repulsion

    Searching for the statistically equilibrated systems formed in heavy ion collisions

    Get PDF
    Further improvements and refinements are brought to the microcanonical multifragmentation model [Al. H. Raduta and Ad. R. Raduta, Phys. Rev. C {\bf 55}, 1344 (1997); {\it ibid.} {\bf 61}, 034611 (2000)]. The new version of the model is tested on the recently published experimental data concerning the Xe+Sn at 32 MeV/u and Gd+U at 36 MeV/u reactions. A remarkable good simultaneous reproduction of fragment size observables and kinematic observables is to be noticed. It is shown that the equilibrated source can be unambiguously identified.Comment: Physical Review C, in pres

    Microcanonical studies on isoscaling

    Full text link
    The exponential scaling of isotopic yields is investigated for sources of different sizes over a broad range of excitation energies and freeze-out volumes, in both primary and asymptotic stages of the decay in the framework of a microcanonical multifragmentation model. It was found that the scaling parameters have a strong dependence on the considered pair of equilibrated sources and excitation energy and are affected by the secondary particle emission of the break-up fragments. No significant influence of the freeze-out volume on the considered isotopic ratios has been observed. Deviations of microcanonical results from grandcanonical expectations are discussed.Comment: 19 pages, 6 figure

    Break-up stage restoration in multifragmentation reactions

    Full text link
    In the case of Xe+Sn at 32 MeV/nucleon multifragmentation reaction break-up fragments are built-up from the experimentally detected ones using evaluations of light particle evaporation multiplicities which thus settle fragment internal excitation. Freeze-out characteristics are extracted from experimental kinetic energy spectra under the assumption of full decoupling between fragment formation and energy dissipated in different degrees of freedom. Thermal kinetic energy is determined uniquely while for freeze-out volume - collective energy a multiple solution is obtained. Coherence between the solutions of the break-up restoration algorithm and the predictions of a multifragmentation model with identical definition of primary fragments is regarded as a way to select the true value. The broad kinetic energy spectrum of 3^3He is consistent with break-up genesis of this isotope.Comment: 17 pages, 5 figure

    Microcanonical studies concerning the recent experimental evaluations of the nuclear caloric curve

    Get PDF
    The microcanonical multifragmentation model from [Al. H. Raduta and Ad. R. Raduta, Phys. Rev. C 55, 1344 (1997); 56, 2059 (1997); 59, 323 (1999)] is refined and improved by taking into account the experimental discrete levels for fragments with A6A \le 6 and by including the stage of sequential decay of the primary excited fragments. The caloric curve is reevaluated and the heat capacity at constant volume curve is represented as a function of excitation energy and temperature. The sequence of equilibrated sources formed in the reactions studied by the ALADIN group (197^{197}Au+197^{197}Au at 600, 800 and 1000 MeV/nucleon bombarding energy) is deduced by fitting simultaneously the model predicted mean multiplicity of intermediate mass fragments (MIMFM_{IMF}) and charge asymmetry of the two largest fragments (a12a_{12}) versus bound charge (ZboundZ_{bound}) on the corresponding experimental data. Calculated HeLi isotopic temperature curves as a function of the bound charge are compared with the experimentally deduced ones.Comment: 13 pages, 4 figure

    Resummation scheme for 3d Yang-Mills and the two-loop magnetic mass for hot gauge theories

    Full text link
    Perturbation theory for non-Abelian gauge theories at finite temperature is plagued by infrared divergences caused by magnetic soft modes g2T\sim g^2T, which correspond to the fields of a 3d Yang-Mills theory. We revisit a gauge invariant resummation scheme to solve this problem by self-consistent mass generation using an auxiliary scalar field, improving over previous attempts in two respects. First, we generalise earlier SU(2) treatments to SU(N). Second, we obtain a gauge independent two-loop gap equation, correcting an error in the literature. The resulting two-loop approximation to the magnetic mass represents a 15\sim 15% correction to the leading one-loop value, indicating a reasonable convergence of the resummation.Comment: 16 pages, 3 figure

    Nonlinear atom interferometer surpasses classical precision limit

    Full text link
    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest [3]. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states [4-8]. Extending quantum interferometry [9] to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the "one-axis-twisting" scheme [10] and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2dB [11-15]. The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms [16]

    Introduction: looking beyond the walls

    Get PDF
    In its consideration of the remarkable extent and variety of non-university researchers, this book takes a broader view of ‘knowledge’ and ‘research’ than in the many hot debates about today’s knowledge society, ‘learning age’, or organisation of research. It goes beyond the commonly held image of ‘knowledge’ as something produced and owned by the full-time experts to take a look at those engaged in active knowledge building outside the university walls

    Evanescent light-matter Interactions in Atomic Cladding Wave Guides

    Full text link
    Alkali vapors, and in particular rubidium, are being used extensively in several important fields of research such as slow and stored light non-linear optics3 and quantum computation. Additionally, the technology of alkali vapors plays a major role in realizing myriad industrial applications including for example atomic clocks magentometers8 and optical frequency stabilization. Lately, there is a growing effort towards miniaturizing traditional centimeter-size alkali vapor cells. Owing to the significant reduction in device dimensions, light matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for non-linear interactions. Here, taking advantage of the mature Complimentary Metal-Oxide-Semiconductor (CMOS) compatible platform of silicon photonics, we construct an efficient and flexible platform for tailored light vapor interactions on a chip. Specifically, we demonstrate light matter interactions in an atomic cladding wave guide (ACWG), consisting of CMOS compatible silicon nitride nano wave-guide core with a Rubidium (Rb) vapor cladding. We observe the highly efficient interaction of the electromagnetic guided mode with the thermal Rb cladding. The nature of such interactions is explained by a model which predicts the transmission spectrum of the system taking into account Doppler and transit time broadening. We show, that due to the high confinement of the optical mode (with a mode area of 0.3{\lambda}2), the Rb absorption saturates at powers in the nW regime.Comment: 10 Pages 4 Figures. 1 Supplementar

    The gradient flow running coupling with twisted boundary conditions

    Get PDF
    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density E(t)\langle E(t)\rangle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2)SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.Comment: 27 pages. LaTe
    corecore