254 research outputs found
Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum
Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: one regards them mostly as synchronized (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses [classically termed steady-state responses (SSRs)] that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha band (8–13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published human EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasizing stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms
Multisensory Home-Monitoring in Individuals With Stable Chronic Obstructive Pulmonary Disease and Asthma: Usability Study of the CAir-Desk
Background: Research integrating multisensory home-monitoring in respiratory disease is scarce. Therefore, we created a novel multisensory home-monitoring device tailored for long-term respiratory disease management (named the CAir-Desk). We hypothesize that recent technological accomplishments can be integrated into a multisensory participant-driven platform. We also believe that this platform could improve chronic disease management and be accessible to large groups at an acceptable cost.
Objective: This study aimed to report on user adherence and acceptance as well as system functionality of the CAir-Desk in a sample of participants with stable chronic obstructive pulmonary disease (COPD) or asthma.
Methods: We conducted an observational usability study. Participants took part in 4 weeks of home-monitoring with the CAir-Desk. The CAir-Desk recorded data from all participants on symptom burden, physical activity, spirometry, and environmental air quality; data on sputum production, and nocturnal cough were only recorded for participants who experienced symptoms. After the study period, participants reported on their perceptions of the usability of the monitoring device through a purpose-designed questionnaire. We used descriptive statistics and visualizations to display results.
Results: Ten participants, 5 with COPD and 5 with asthma took part in this study. They completed symptom burden questionnaires on a median of 96% (25th percentile 14%, 75th percentile 96%), spirometry recordings on 55% (20%, 94%), wrist-worn physical activity recordings on 100% (97%, 100%), arm-worn physical activity recordings on 45% (13%, 63%), nocturnal cough recordings on 34% (9%, 54%), sputum recordings on 5% (3%, 12%), and environmental air quality recordings on 100% (99%, 100%) of the study days. The participants indicated that the measurements consumed a median of 13 (10, 15) min daily, and that they preferred the wrist-worn physical activity monitor to the arm-worn physical activity monitor.
Conclusions: The CAir-Desk showed favorable technical performance and was well-accepted by our sample of participants with stable COPD and asthma. The obtained insights were used in a redesign of the CAir-Desk, which is currently applied in a randomized controlled trial including an interventional program
Neural population coding: combining insights from microscopic and mass signals
Panzeri S, Macke JH, Gross J, Kayser C. Neural population coding: combining insights from microscopic and mass signals. Trends Cogn Sci. 2015;19(3):162-72
High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids
We report the observation of strong coupling between the exchange-coupled
spins in gallium-doped yttrium iron garnet and a superconducting coplanar
microwave resonator made from Nb. The measured coupling rate of 450 MHz is
proportional to the square-root of the number of exchange-coupled spins and
well exceeds the loss rate of 50 MHz of the spin system. This demonstrates that
exchange coupled systems are suitable for cavity quantum electrodynamics
experiments, while allowing high integration densities due to their
extraordinary high spin densities. Our results furthermore show, that
experiments with multiple exchange-coupled spin systems interacting via a
single resonator are within reach.Comment: 5 pages, 3 figure
Geological Record of Water and Wind Processes on Mars as Observed by the Mars Express High Resolution Stereo Camera
This review paper summarizes the observations and results of the Mars Express Mission and its application in the analysis of geological processes and landforms on Mars during the last 20 years. The Mars Express observations provided an extended data base allowing a comparative evaluation of different geological surface landforms and their time-based delimitation. High-resolution imagery and digital elevations models on a local to regional scale and spectral measurements are the basis for geological analyses of water-related surface processes on Mars. This includes the nature and discharges of valley networks, formation timescale of deltas, volumina of sedimentary deposits as well as estimating the age of geological units by crater size–frequency distribution measurements. Both the quantifying of geological processes and the determination of absolute model ages allows to constraint the evolution of Martian water-related activity in space and time. Comparative age estimation of fluvial, glacial, and lacustrine deposits, as well as their timing and episodicity, has revealed the nature and evolution of the Martian surface hydrological cycle. Fluvial and lacustrine activity phases are spread over a time span from Noachian until Amazonian periods, but detailed studies show that they have been interrupted by multiple and long-lasting phases of cessation and quiescent. In addition, evidence of glacial activity shows discrete phases of enhanced intensity correlating with increased spin-axis obliquity amplitude. The episodicity of geological processes, erosion, deposition, and glaciation on Mars demonstrate a close correlation between individual surface processes and endogenic activity as well as spin-axis/orbital variations and changing climate condition
Comparison of undirected frequency-domain connectivity measures for cerebro-peripheral analysis
Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity (measured by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or physiological rhythms (such as pupil dilation or respiration). Due to the distinct rhythmicity of these signals, undirected connectivity is typically assessed in the frequency domain. This leaves the investigator with two critical choices, namely a) the appropriate measure for spectral estimation (i.e., the transformation into the frequency domain) and b) the actual connectivity measure. As there is no consensus regarding best practice, a wide variety of methods has been applied. Here we systematically compare combinations of six standard spectral estimation methods (comprising fast Fourier and continuous wavelet transformation, bandpass filtering, and short-time Fourier transformation) and six connectivity measures (phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase consistency, magnitude squared coherence, and entropy). We provide performance measures of each combination for simulated data (with precise control over true connectivity), a single-subject set of real MEG data, and a full group analysis of real MEG data. Our results show that, overall, WPPC and GCMI tend to outperform other connectivity measures, while entropy was the only measure sensitive to bimodal deviations from a uniform phase distribution. For group analysis, choosing the appropriate spectral estimation method appears to be more critical than the connectivity measure. We discuss practical implications (sampling rate, SNR, computation time, and data length) and aim to provide recommendations tailored to particular research questions
Coherent multi-flavour spin dynamics in a fermionic quantum gas
Microscopic spin interaction processes are fundamental for global static and
dynamical magnetic properties of many-body systems. Quantum gases as pure and
well isolated systems offer intriguing possibilities to study basic magnetic
processes including non-equilibrium dynamics. Here, we report on the
realization of a well-controlled fermionic spinor gas in an optical lattice
with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived
intrinsic spin oscillations and investigate the transition from two-body to
many-body dynamics. The latter results in a spin-interaction driven melting of
a band insulator. Via an external magnetic field we control the system's
dimensionality and tune the spin oscillations in and out of resonance. Our
results open new routes to study quantum magnetism of fermionic particles
beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure
Automatic Network Fingerprinting through Single-Node Motifs
Complex networks have been characterised by their specific connectivity
patterns (network motifs), but their building blocks can also be identified and
described by node-motifs---a combination of local network features. One
technique to identify single node-motifs has been presented by Costa et al. (L.
D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett.,
87, 1, 2009). Here, we first suggest improvements to the method including how
its parameters can be determined automatically. Such automatic routines make
high-throughput studies of many networks feasible. Second, the new routines are
validated in different network-series. Third, we provide an example of how the
method can be used to analyse network time-series. In conclusion, we provide a
robust method for systematically discovering and classifying characteristic
nodes of a network. In contrast to classical motif analysis, our approach can
identify individual components (here: nodes) that are specific to a network.
Such special nodes, as hubs before, might be found to play critical roles in
real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures
Dietary spermidine for lowering high blood pressure
Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular- protective autophagy inducer that can be readily integrated in common diets
- …