591 research outputs found

    Path Integral Approach for Superintegrable Potentials on Spaces of Non-constant Curvature: II. Darboux Spaces DIII and DIV

    Get PDF
    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces \DIII and \DIV five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively

    Magnetic Transition in the Kondo Lattice System CeRhSn2

    Full text link
    Our resistivity, magnetoresistance, magnetization and specific heat data provide unambiguous evidence that CeRhSn2 is a Kondo lattice system which undergoes magnetic transition below 4 K.Comment: 3 pages text and 5 figure

    Superconductivity on the threshold of magnetism in CePd2Si2 and CeIn3

    Full text link
    The magnetic ordering temperature of some rare earth based heavy fermion compounds is strongly pressure-dependent and can be completely suppressed at a critical pressure, pc_c, making way for novel correlated electron states close to this quantum critical point. We have studied the clean heavy fermion antiferromagnets CePd2_2Si2_2 and CeIn3_3 in a series of resistivity measurements at high pressures up to 3.2 GPa and down to temperatures in the mK region. In both materials, superconductivity appears in a small window of a few tenths of a GPa on either side of pc_c. We present detailed measurements of the superconducting and magnetic temperature-pressure phase diagram, which indicate that superconductivity in these materials is enhanced, rather than suppressed, by the closeness to magnetic order.Comment: 11 pages, including 9 figure

    Maximal superintegrability on N-dimensional curved spaces

    Full text link
    A unified algebraic construction of the classical Smorodinsky-Winternitz systems on the ND sphere, Euclidean and hyperbolic spaces through the Lie groups SO(N+1), ISO(N), and SO(N,1) is presented. Firstly, general expressions for the Hamiltonian and its integrals of motion are given in a linear ambient space RN+1R^{N+1}, and secondly they are expressed in terms of two geodesic coordinate systems on the ND spaces themselves, with an explicit dependence on the curvature as a parameter. On the sphere, the potential is interpreted as a superposition of N+1 oscillators. Furthermore each Lie algebra generator provides an integral of motion and a set of 2N-1 functionally independent ones are explicitly given. In this way the maximal superintegrability of the ND Euclidean Smorodinsky-Winternitz system is shown for any value of the curvature.Comment: 8 pages, LaTe

    The Coulomb-Oscillator Relation on n-Dimensional Spheres and Hyperboloids

    Full text link
    In this paper we establish a relation between Coulomb and oscillator systems on nn-dimensional spheres and hyperboloids for n≄2n\geq 2. We show that, as in Euclidean space, the quasiradial equation for the n+1n+1 dimensional Coulomb problem coincides with the 2n2n-dimensional quasiradial oscillator equation on spheres and hyperboloids. Using the solution of the Schr\"odinger equation for the oscillator system, we construct the energy spectrum and wave functions for the Coulomb problem.Comment: 15 pages, LaTe

    New Superconducting and Magnetic Phases Emerge on the Verge of Antiferromagnetism in CeIn3_3

    Full text link
    We report the discovery of new superconducting and novel magnetic phases in CeIn3_3 on the verge of antiferromagnetism (AFM) under pressure (PP) through the In-nuclear quadrupole resonance (NQR) measurements. We have found a PP-induced phase separation of AFM and paramagnetism (PM) without any trace for a quantum phase transition in CeIn3_3. A new type of superconductivity (SC) was found in P=2.28−2.5P=2.28-2.5 GPa to coexist with AFM that is magnetically separated from PM where the heavy fermion SC takes place. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order magnetic phase transition might mediate attractive interaction to form Cooper pairs.Comment: 4 pages, 4 EPS figures, submitted to J. Phys. Soc. Jp
    • 

    corecore