2,701 research outputs found

    Higgsless Electroweak Model and Contraction of Gauge Group

    Full text link
    A modified formulation of the Electroweak Model with 3-dimensional spherical geometry in the target space is suggested. The {\it free} Lagrangian in the spherical field space along with the standard gauge field Lagrangian form the full Higgsless Lagrangian of the model, whose second order terms reproduce the same experimentally verified fields with the same masses as the Standard Electroweak Model. The vector bosons masses are automatically generated, so there is no need in special mechanism of spontaneous symmetry breaking. The limiting case of the modified Higgsless Electroweak Model, which corresponds to the contracted gauge group SU(2;j)×U(1)SU(2;j)\times U(1) is discussed. Within framework of the limit model Z-boson, electromagnetic and electron fields are interpreted as an external ones with respect to W-bosons and neutrino fields. The W-bosons and neutrino fields do not effect on these external fields. The masses of all particles remain the same, but the field interactions in contracted model are more simple as compared with the standard Electroweak Model due to nullification of some terms.Comment: Talk at the International Workshop "`Supersymmetries and Quantum Symmetries"' (SQS-09), Dubna, Russia, July 29 -- August 3, 2009, 11

    Analytic Solution of Bremsstrahlung TBA

    Full text link
    We consider the quark--anti-quark potential on the three sphere or the generalized cusp anomalous dimension in planar N=4 SYM. We concentrate on the vacuum potential in the near BPS limit with LL units of R-charge. Equivalently, we study the anomalous dimension of a super-Wilson loop with L local fields inserted at a cusp. The system is described by a recently proposed infinite set of non-linear integral equations of the Thermodynamic Bethe Ansatz (TBA) type. That system of TBA equations is very similar to the one of the spectral problem but simplifies a bit in the near BPS limit. Using techniques based on the Y-system of functional equations we first reduced the infinite system of TBA equations to a Finite set of Nonlinear Integral Equations (FiNLIE). Then we solve the FiNLIE system analytically, obtaining a simple analytic result for the potential! Surprisingly, we find that the system has equivalent descriptions in terms of an effective Baxter equation and in terms of a matrix model. At L=0, our result matches the one obtained before using localization techniques. At all other L's, the result is new. Having a new parameter, L, allows us to take the large L classical limit. We use the matrix model description to solve the classical limit and match the result with a string theory computation. Moreover, we find that the classical string algebraic curve matches the algebraic curve arising from the matrix model.Comment: 50 pages, 5 figures. v2: references added, JHEP versio

    Numerical results for the exact spectrum of planar AdS4/CFT3

    Get PDF
    We compute the anomalous dimension for a short single-trace operator in planar ABJM theory at intermediate coupling. This is done by solving numerically the set of Thermodynamic Bethe Ansatz equations which are expected to describe the exact spectrum of the theory. We implement a truncation method which significantly reduces the number of integral equations to be solved and improves numerical efficiency. Results are obtained for a range of 't Hooft coupling lambda corresponding to 0≤h(λ)≤10 \leq h(\lambda) \leq 1, where h(lambda) is the interpolating function of the AdS4/CFT3 Bethe equations.Comment: v3: corrected Acknowledgements section; v4: minor changes, published version; v5: fixed typos in Eq. (3.9

    Flow induced ultrasound scattering: experimental studies

    Full text link
    Sound scattering by a finite width beam on a single rigid body rotation vortex flow is detected by a linear array of transducers (both smaller than a flow cell), and analyzed using a revised scattering theory. Both the phase and amplitude of the scattered signal are obtained on 64 elements of the detector array and used for the analysis of velocity and vorticity fields. Due to averaging on many pulses the signal-to-noise ratio of the phases difference in the scattered sound signal can be amplified drastically, and the resolution of the method in the detection of circulation, vortex radius, vorticity, and vortex location becomes comparable with that obtained earlier by time-reversal mirror (TRM) method (P. Roux, J. de Rosny, M. Tanter, and M. Fink, {\sl Phys. Rev. Lett.} {\bf 79}, 3170 (1997)). The revised scattering theory includes two crucial steps, which allow overcoming limitations of the existing theories. First, the Huygens construction of a far field scattering signal is carried out from a signal obtained at any intermediate plane. Second, a beam function that describes a finite width beam is introduced, which allows using a theory developed for an infinite width beam for the relation between a scattering amplitude and the vorticity structure function. Structure functions of the velocity and vorticity fields deduced from the sound scattering signal are compared with those obtained from simultaneous particle image velocimetry (PIV) measurements. Good quantitative agreement is found.Comment: 14 pages, 23 figures. accepted for publication in Phys. Fluids(June issue

    On the Fermionic Frequencies of Circular Strings

    Full text link
    We revisit the semiclassical computation of the fluctuation spectrum around different circular string solutions in AdS_5xS^5 and AdS_4xCP^3, starting from the Green-Schwarz action. It has been known that the results for these frequencies obtained from the algebraic curve and from the worldsheet computations sometimes do not agree. In particular, different methods give different results for the half-integer shifts in the mode numbers of the frequencies. We find that these discrepancies can be removed if one carefully takes into account the transition matrices in the spin bundle over the target space.Comment: 13 pages, 1 figur

    Snowflake groups, Perron-Frobenius eigenvalues, and isoperimetric spectra

    Full text link
    The k-dimensional Dehn (or isoperimetric) function of a group bounds the volume of efficient ball-fillings of k-spheres mapped into k-connected spaces on which the group acts properly and cocompactly; the bound is given as a function of the volume of the sphere. We advance significantly the observed range of behavior for such functions. First, to each non-negative integer matrix P and positive rational number r, we associate a finite, aspherical 2-complex X_{r,P} and calculate the Dehn function of its fundamental group G_{r,P} in terms of r and the Perron-Frobenius eigenvalue of P. The range of functions obtained includes x^s, where s is an arbitrary rational number greater than or equal to 2. By repeatedly forming multiple HNN extensions of the groups G_{r,P} we exhibit a similar range of behavior among higher-dimensional Dehn functions, proving in particular that for each positive integer k and rational s greater than or equal to (k+1)/k there exists a group with k-dimensional Dehn function x^s. Similar isoperimetric inequalities are obtained for arbitrary manifold pairs (M,\partial M) in addition to (B^{k+1},S^k).Comment: 42 pages, 8 figures. Version 2: 47 pages, 8 figures; minor revisions and reformatting; to appear in Geom. Topo

    A Radiation hard bandgap reference circuit in a standard 0.13um CMOS Technology

    Get PDF
    With ongoing CMOS evolution, the gate-oxide thickness steadily decreases, resulting in an increased radiation tolerance of MOS transistors. Combined with special layout techniques, this yields circuits with a high inherent robustness against X-rays and other ionizing radiation. In bandgap voltage references, the dominant radiation-susceptibility is then no longer associated with the MOS transistors, but is dominated by the diodes. This paper gives an analysis of radiation effects in both MOSdevices and diodes and presents a solution to realize a radiation-hard voltage reference circuit in a standard CMOS technology. A demonstrator circuit was implemented in a standard 0.13 m CMOS technology. Measurements show correct operation with supply voltages in the range from 1.4 V down to 0.85 V, a reference voltage of 405 mV 7.5 mV ( = 6mVchip-to-chip statistical spread), and a reference voltage shift of only 1.5 mV (around 0.8%) under irradiation up to 44 Mrad (Si)

    Possible quantum kinematics. II. Non-minimal case

    Full text link
    The quantum analogs of the N-dimensional Cayley-Klein spaces with different combinations of quantum and Cayley-Klein structures are described for non-minimal multipliers, which include the first and the second powers of contraction parameters in the transformation of deformation parameter. The noncommutative analogs of (N-1)-dimensional constant curvature spaces are introduced. Part of these spaces for N=5 are interpreted as the noncommutative analogs of (1+3) space-time models. As a result the wide variety of the quantum deformations of realistic kinematics are suggested.Comment: 13 pages, no figure

    On contractions of classical basic superalgebras

    Full text link
    We define a class of orthosymplectic osp(m;j∣2n;ω)osp(m;j|2n;\omega) and unitary sl(m;j∣n;ϵ)sl(m;j|n;\epsilon) superalgebras which may be obtained from osp(m∣2n)osp(m|2n) and sl(m∣n)sl(m|n) by contractions and analytic continuations in a similar way as the special linear, orthogonal and the symplectic Cayley-Klein algebras are obtained from the corresponding classical ones. Casimir operators of Cayley-Klein superalgebras are obtained from the corresponding operators of the basic superalgebras. Contractions of sl(2∣1)sl(2|1) and osp(3∣2)osp(3|2) are regarded as an examples.Comment: 15 pages, Late
    • …
    corecore