89 research outputs found

    A Microfluidic Rectifier: Anisotropic Flow Resistance at Low Reynolds Numbers

    Get PDF
    It is one of the basic concepts of Newtonian fluid dynamics that at low Reynolds number (Re) the Navier-Stokes equation is linear and flows are reversible. In microfluidic devices, where Re is essentially always low, this implies that flow resistance in microchannels is isotropic. Here we present a microfluidic rectifier: a microscopic channel of a special shape whose flow resistance is strongly anisotropic, differing by up to a factor of 2 for opposite flow directions. Its nonlinear operation at arbitrary small Re is due to non-Newtonian elastic properties of the working fluid, which is a 0.01% aqueous solution of a high molecular weight polymer. The rectifier works as a dynamic valve and may find applications in microfluidic pumps and other integrated devices

    Pneumatic capillary gun for ballistic delivery of microparticles

    Full text link
    A pneumatic gun for ballistic delivery of microparticles to soft targets is proposed and demonstrated. The particles are accelerated by a high speed flow of Helium in a capillary tube. Vacuum suction applied to a concentric, larger diameter tube is used to divert substantially all of the flow of Helium from the gun nozzle, thereby preventing the gas from hitting and damaging the target. Speed of ejection of micron-sized gold particles from the gun nozzle, and their depth of penetration into agarose gels are reported.Comment: 7 pages, 3 figure

    Rigidity of silicone substrates controls cell spreading and stem cell differentiation.

    Get PDF
    The dependences of spreading and differentiation of stem cells plated on hydrogel and silicone gel substrates on the rigidity and porosity of the substrates have recently been a subject of some controversy. In experiments on human mesenchymal stem cells plated on soft, medium rigidity, and hard silicone gels we show that harder gels are more osteogenic, softer gels are more adipogenic, and cell spreading areas increase with the silicone gel substrate rigidity. The results of our study indicate that substrate rigidity induces some universal cellular responses independently of the porosity or topography of the substrate

    A microfluidic 2Ă—2 optical switch

    Get PDF
    A 2Ă—2 microfluidic-based optical switch is proposed and demonstrated. The switch is made of an optically clear silicon elastomer, Polydimethylsiloxane (PDMS), using soft lithography. It has insertion loss smaller than 1 dB and extinction ratio on the order of 20 dB. The device is switching between transmission (bypass) and reflection (exchange) modes within less than 20 m

    Blood flow-induced Notch activation and endothelial migration enable vascular remodeling in zebrafish embryos.

    Get PDF
    Arteries and veins are formed independently by different types of endothelial cells (ECs). In vascular remodeling, arteries and veins become connected and some arteries become veins. It is unclear how ECs in transforming vessels change their type and how fates of individual vessels are determined. In embryonic zebrafish trunk, vascular remodeling transforms arterial intersegmental vessels (ISVs) into a functional network of arteries and veins. Here we find that, once an ISV is connected to venous circulation, venous blood flow promotes upstream migration of ECs that results in displacement of arterial ECs by venous ECs, completing the transformation of this ISV into a vein without trans-differentiation of ECs. Arterial blood flow initiated in two neighboring ISVs prevents their transformation into veins by activating Notch signaling in ECs. Together, different responses of ECs to arterial and venous blood flow lead to formation of a balanced network with equal numbers of arteries and veins

    Ultrafast cooling reveals microsecond-scale biomolecular dynamics

    Get PDF
    The temperature-jump technique, in which the sample is rapidly heated by a powerful laser pulse, has been widely used to probe the fast dynamics of folding of proteins and nucleic acids. However, the existing temperature-jump setups tend to involve sophisticated and expensive instrumentation, while providing only modest temperature changes of ~10–15 °C, and the temperature changes are only rapid for heating, but not cooling. Here we present a setup comprising a thermally conductive sapphire substrate with light-absorptive nano-coating, a microfluidic device and a rapidly switched moderate-power infrared laser with the laser beam focused on the nano-coating, enabling heating and cooling of aqueous solutions by ~50 °C on a 1-μs time scale. The setup is used to probe folding and unfolding dynamics of DNA hairpins after direct and inverse temperature jumps, revealing low-pass filter behaviour during periodic temperature variations

    The nucleus of endothelial cell as a sensor of blood flow direction

    Get PDF
    Summary Hemodynamic shear stresses cause endothelial cells (ECs) to polarize in the plane of the flow. Paradoxically, under strong shear flows, ECs disassemble their primary cilia, common sensors of shear, and thus must use an alternative mechanism of sensing the strength and direction of flow. In our experiments in microfluidic perfusion chambers, confluent ECs developed planar cell polarity at a rate proportional to the shear stress. The location of Golgi apparatus and microtubule organizing center was biased to the upstream side of the nucleus, i.e. the ECs polarized against the flow. These in vitro results agreed with observations in murine blood vessels, where EC polarization against the flow was stronger in high flow arteries than in veins. Once established, flow-induced polarization persisted over long time intervals without external shear. Transient destabilization of acto-myosin cytoskeleton by inhibition of myosin II or depolymerization of actin promoted polarization of EC against the flow, indicating that an intact acto-myosin cytoskeleton resists flow-induced polarization. These results suggested that polarization was induced by mechanical displacement of EC nuclei downstream under the hydrodynamic drag. This hypothesis was confirmed by the observation that acute application of a large hydrodynamic force to ECs resulted in an immediate downstream displacement of nuclei and was sufficient to induce persistent polarization. Taken together, our data indicate that ECs can sense the direction and strength of blood flow through the hydrodynamic drag applied to their nuclei
    • …
    corecore