275 research outputs found

    Contextual Social Networking

    Get PDF
    The thesis centers around the multi-faceted research question of how contexts may be detected and derived that can be used for new context aware Social Networking services and for improving the usefulness of existing Social Networking services, giving rise to the notion of Contextual Social Networking. In a first foundational part, we characterize the closely related fields of Contextual-, Mobile-, and Decentralized Social Networking using different methods and focusing on different detailed aspects. A second part focuses on the question of how short-term and long-term social contexts as especially interesting forms of context for Social Networking may be derived. We focus on NLP based methods for the characterization of social relations as a typical form of long-term social contexts and on Mobile Social Signal Processing methods for deriving short-term social contexts on the basis of geometry of interaction and audio. We furthermore investigate, how personal social agents may combine such social context elements on various levels of abstraction. The third part discusses new and improved context aware Social Networking service concepts. We investigate special forms of awareness services, new forms of social information retrieval, social recommender systems, context aware privacy concepts and services and platforms supporting Open Innovation and creative processes. This version of the thesis does not contain the included publications because of copyrights of the journals etc. Contact in terms of the version with all included publications: Georg Groh, [email protected] zentrale Gegenstand der vorliegenden Arbeit ist die vielschichtige Frage, wie Kontexte detektiert und abgeleitet werden können, die dazu dienen können, neuartige kontextbewusste Social Networking Dienste zu schaffen und bestehende Dienste in ihrem Nutzwert zu verbessern. Die (noch nicht abgeschlossene) erfolgreiche Umsetzung dieses Programmes führt auf ein Konzept, das man als Contextual Social Networking bezeichnen kann. In einem grundlegenden ersten Teil werden die eng zusammenhängenden Gebiete Contextual Social Networking, Mobile Social Networking und Decentralized Social Networking mit verschiedenen Methoden und unter Fokussierung auf verschiedene Detail-Aspekte näher beleuchtet und in Zusammenhang gesetzt. Ein zweiter Teil behandelt die Frage, wie soziale Kurzzeit- und Langzeit-Kontexte als für das Social Networking besonders interessante Formen von Kontext gemessen und abgeleitet werden können. Ein Fokus liegt hierbei auf NLP Methoden zur Charakterisierung sozialer Beziehungen als einer typischen Form von sozialem Langzeit-Kontext. Ein weiterer Schwerpunkt liegt auf Methoden aus dem Mobile Social Signal Processing zur Ableitung sinnvoller sozialer Kurzzeit-Kontexte auf der Basis von Interaktionsgeometrien und Audio-Daten. Es wird ferner untersucht, wie persönliche soziale Agenten Kontext-Elemente verschiedener Abstraktionsgrade miteinander kombinieren können. Der dritte Teil behandelt neuartige und verbesserte Konzepte für kontextbewusste Social Networking Dienste. Es werden spezielle Formen von Awareness Diensten, neue Formen von sozialem Information Retrieval, Konzepte für kontextbewusstes Privacy Management und Dienste und Plattformen zur Unterstützung von Open Innovation und Kreativität untersucht und vorgestellt. Diese Version der Habilitationsschrift enthält die inkludierten Publikationen zurVermeidung von Copyright-Verletzungen auf Seiten der Journals u.a. nicht. Kontakt in Bezug auf die Version mit allen inkludierten Publikationen: Georg Groh, [email protected]

    Simpler becomes Harder: Do LLMs Exhibit a Coherent Behavior on Simplified Corpora?

    Full text link
    Text simplification seeks to improve readability while retaining the original content and meaning. Our study investigates whether pre-trained classifiers also maintain such coherence by comparing their predictions on both original and simplified inputs. We conduct experiments using 11 pre-trained models, including BERT and OpenAI's GPT 3.5, across six datasets spanning three languages. Additionally, we conduct a detailed analysis of the correlation between prediction change rates and simplification types/strengths. Our findings reveal alarming inconsistencies across all languages and models. If not promptly addressed, simplified inputs can be easily exploited to craft zero-iteration model-agnostic adversarial attacks with success rates of up to 50%Comment: Published at DeTermIt! Workshop at LREC-COLING 202

    Ukrainian Texts Classification: Exploration of Cross-lingual Knowledge Transfer Approaches

    Full text link
    Despite the extensive amount of labeled datasets in the NLP text classification field, the persistent imbalance in data availability across various languages remains evident. Ukrainian, in particular, stands as a language that still can benefit from the continued refinement of cross-lingual methodologies. Due to our knowledge, there is a tremendous lack of Ukrainian corpora for typical text classification tasks. In this work, we leverage the state-of-the-art advances in NLP, exploring cross-lingual knowledge transfer methods avoiding manual data curation: large multilingual encoders and translation systems, LLMs, and language adapters. We test the approaches on three text classification tasks -- toxicity classification, formality classification, and natural language inference -- providing the "recipe" for the optimal setups
    corecore