76 research outputs found

    Clinical use of a portable electronic device to measure haematocrit

    Get PDF
    A small portable device called the blood electrometer (HEM) was developed to assist clinicians to distinguish patients with extreme blood loss from those with normal packed cell volumes. Blood was collected in 5 ml lithium heparin tubes from 80 normal controls and 24 patients in an intensive care unit. BEM and accurate microcentrifugal techniques were compared. Intraclass correlation coefficients between the techniques of r =0,96 and r =0,93 were found in the normal controls and patients respectively. Because the BEM operates on the principle of conductivity, changes in some of the biochemical variables which could influence conductivity were investigated in the patients. Mean plasma total protein and albumin concentrations were lower compared with normal reference ranges. Six of the 24 patients were acidotic and 4 alkalotic. Leucocyte counts obtained randomly from 13 patients were elevated. Changes in measurements which could influence conductivity did not affect the BEM reading. We conclude that the portable BEM could be of great value in circumstances where a fixed power source is not available and rapid haematocrit measurements in a large number of patients are required

    Effect of desferrioxamine on reperfusion damage of rat heart mitochondria

    Get PDF
    Ischaemia of the myocardium leads to necrosis unless oxygen supply is restored but it has only recently been realised that reperfusion is not without danger. The greatest rate ofmyocardial damage, as measured by mitochondrial function, occurred during the first 5 minutes of reperfusion in rat hearts subjected to normothermic ischaemic cardiac arrest. Addition of desferrioxamine to the perfusate after 5 minutes of reperfusion did not reverse the mitochondrial damage. It is therefore concluded that desferrioxamine prevents mitochondrial damage caused by ischaemia-reperlusion but does not reverse the damage already present

    Novel species of Mycosphaerellaceae and Teratosphaeriaceae

    Get PDF
    Recent phylogenetic studies based on multi-gene data have provided compelling evidence that the Mycosphaerellaceae and Teratosphaeriaceae represent numerous genera, many of which can be distinguished based on their anamorph morphology. The present study represents the second contribution in a series describing several novel species in different capnodealean genera defined in a previous study. Novelties on Eucalyptus from Australia include: Penidiella pseudotasmaniensis, P. tenuiramis, Phaeothecoidea intermedia, P. minutispora, Pseudocercospora tereticornis, Readeriella angustia, R. eucalyptigena, R. menaiensis, R. pseudocallista, R. tasmanica, Teratosphaeria alboconidia, T. complicata, T. majorizuluensis, T. miniata, T. profusa, Zasmidium aerohyalinosporum and Z. nabiacense, while Teratosphaeria xenocryptica is described on Eucalyptus from Chile. Novelties on other hosts include Phaeophleospora eugeniicola on Eugenia from Brazil, and Zasmidium nocoxi on twig litter from the USA

    Some qualities and fractionation of a nuclease from cotyledons of germinating Phaseolus vulgaris

    Get PDF
    During gel filtration and subsequent anion exchange chromatography the nuclease activity from cotyledons of germinating Phaseolus vulgaris L. was eluted as a single peak, containing high RNase and low inherent DNase activities. The RNase activity was unaffected by EDTA and had no particular requirement for mono- or divalent cations, but was substantially inhibited by Mn++ and Zn++. Sodium dodecyl sulphate and the vanadyl ribonucleoside complex were identified as effective inhibitors of the RNase activity. The base preference for homoribonucleic acids was: poly U>poly C>poly A>poly G

    Unravelling Mycosphaerella: do you believe in genera?

    Get PDF
    Many fungal genera have been defined based on single characters considered to be informative at the generic level. In addition, many unrelated taxa have been aggregated in genera because they shared apparently similar morphological characters arising from adaptation to similar niches and convergent evolution. This problem is aptly illustrated in Mycosphaerella. In its broadest definition, this genus of mainly leaf infecting fungi incorporates more than 30 form genera that share similar phenotypic characters mostly associated with structures produced on plant tissue or in culture. DNA sequence data derived from the LSU gene in the present study distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. In some cases, these clades represent recognisable monophyletic lineages linked to well circumscribed anamorphs. This association is complicated, however, by the fact that morphologically similar form genera are scattered throughout the order (Capnodiales), and for some species more than one morph is expressed depending on cultural conditions and media employed for cultivation. The present study shows that Mycosphaerella s.s. should best be limited to taxa with Ramularia anamorphs, with other well defined clades in the Mycosphaerellaceae representing Cercospora, Cercosporella, Dothistroma, Lecanosticta, Phaeophleospora, Polythrincium, Pseudocercospora, Ramulispora, Septoria and Sonderhenia. The genus Teratosphaeria accommodates taxa with Kirramyces anamorphs, while other clades supported in the Teratosphaeriaceae include Baudoinea, Capnobotryella, Devriesia, Penidiella, Phaeothecoidea, Readeriella, Staninwardia and Stenella. The genus Schizothyrium with Zygophiala anamorphs is supported as belonging to the Schizothyriaceae, while Dissoconium and Ramichloridium appear to represent a distinct family. Several clades remain unresolved due to limited sampling. Mycosphaerella, which has hitherto been used as a term of convenience to describe ascomycetes with solitary ascomata, bitunicate asci and 1-septate ascospores, represents numerous genera and several families yet to be defined in future studies

    Allelochaeta (Sporocadaceae): Pigmentation lost and gained

    Get PDF
    The appendaged coelomycete genus Seimatosporium (Sporocadaceae, Sordariomycetes) and some of its purported synonyms Allelochaeta,Diploceras and Vermisporium are re-evaluated. Based on DNA data for five loci (ITS, LSU, rpb2, tub2 and tef1), Seimatosporium is shown to be paraphyletic. The ex-type species of Allelochaeta, Discostromopsis and Vermisporium represent a distinct sister clade to which the oldest name Allelochaeta is applied. These genera were traditionally separated based on a combination of conidial pigmentation, septation, and the nature of their conidial appendages. Allelochaeta is revealed to include taxa with both branched or solitary appendages, that could be cellular or continuous, with conidia being (2–)3(–5)-septate, hyaline, or pigmented, concolourous or versicolourous. This suggests that these characters should be applied at species, and not at the generic level. Conidial pigmentation appears to have been lost or gained several times during the evolution of species within Allelochaeta. In total, 25 new species, 15 new combinations, and 10 new epitypifications are proposed

    Macroscopic blood supply to the hypophysis and hypothalamus of the ostrich (Struthio camelus)

    Get PDF
    The branching pattern of the Aa. carotes internae and the macroscopic blood supply to the hypophysis and hypothalamus of the ostrich were studied on ten dissected acrylic vascular-injected heads and ten corrosion preparations of acrylic vascular casts of the head. The A. carotis cerebralis was found to be the only source of blood supply to the hypophysis and hypothalamus. The neurohypophysis was supplied by the caudal hypophyseal and infundibular arteries. The pars distalis was supplied by portal vessels from the ventral hypothalamic region,and it also received arterial blood directly from the infundibular arteries. The hypothalamus received blood from the Aa. infundibulares, A. ventralis tecti mesencephali and A. preopticae.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat X Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format.German Academic Exchange Services.mn201

    Sperm-storage tubules in the vagina of the ostrich (Struthio camelus)

    Get PDF
    Sperm-storage tubules have been described in a number of species of birds. The presence of these tubules in the Rhea has been mentioned, but no description of these structures in ratites is available. The purpose of this study was to determine the presence and morphology of sperm-storage tubules in the vagina of the ostrich. The study was performed with the use of conventional light- and electron-microscopic techniques. Sperm-storage tubules were located in a 200-mm-wide band of the vagina adjacent to the utero-vaginal junction. The tubules were mostly branched and slightly coiled and lined by columnar epithelial cells. The cells contained a basal nucleus and displayed extensive apical junctional complexes. TEM revealed sperm in all the tubules examined.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format.mn201

    New and Interesting Fungi. 1

    Get PDF
    This study introduces two new families, one new genus, 22 new species, 10 new combinations, four epitypes, and 16 interesting new host and / or geographical records. Cylindriaceae (based on Cylindrium elongatum) is introduced as new family, with three new combinations.Xyladictyochaetaceae (based on Xyladictyochaetalusitanica) is introduced to accommodate Xyladictyochaeta. Pseudoanungitea gen. nov. (based on P.syzygii)is described on stems of Vaccinium myrtillus(Germany). New species include: Exophiala eucalypticola on Eucalyptus obliqua leaf litter, Phyllosticta hakeicola on leaves of Hakea sp.,Setophaeosphaeriacitricola on leaves of Citrus australasica, and Sirastachyscyperacearum on leaves of Cyperaceae(Australia); Polyscytalum chilense on leaves of Eucalyptus urophylla (Chile); Pseudoanungitea vaccinii on Vaccinium myrtillus (Germany); Teichospora quercus on branch tissue of Quercus sp. (France); Fusiconidiumlycopodiellae on stems of Lycopodiella inundata,Monochaetiajunipericola on twig of Juniperus communis,Myrmecridiumsorbicola on branch tissues of Sorbus aucuparia, Parathyridariaphiladelphi on twigs of Philadelphus coronarius, and Wettsteininaphiladelphi on twigs of Philadelphus coronarius (Germany); Zygosporium pseudogibbum on leaves of Eucalyptus pellita (Malaysia); Pseudoanungiteavariabilis on dead wood (Spain); Alfaria acaciae on leaves of Acacia propinqua, Dictyochaeta mimusopis on leaves of Mimusops caffra,and Pseudocercosporabreonadiae on leaves of Breonadia microcephala (South Africa); Colletotrichumkniphofiae on leaves of Kniphofia uvaria,Subplenodomusiridicola on Iris sp., and Trochila viburnicola on twig cankers on Viburnum sp. (UK); Polyscytalum neofecundissimum on Quercus robur leaf litter, and Roussoellaeuonymi on fallen branches of Euonymus europaeus (Ukraine). New combinations include: Cylindrium algarvense on leaves of Eucalyptus sp. (Portugal), Cylindrium purgamentum on leaf litter (USA), Cylindrium syzygii on leaves of Syzygium sp. (Australia), Microdochium musae on leaves of Musa sp. (Malaysia), Polyscytalum eucalyptigenum on Eucalyptus grandis × pellita (Malaysia), P. eucalyptorum on leaves of Eucalyptus (Australia), P. grevilleae on leaves of Grevillea (Australia), P. nullicananum on leaves of Eucalyptus (Australia), Pseudoanungiteasyzygii on Syzygium cordatum leaf litter (South Africa), and Setophaeosphaeriasidae on leaves of Sida sp. (Brazil). New records include: Sphaerellopsis paraphysata on leaves of Phragmites sp., Vermiculariopsiella dichapetali on leaves of Melaleuca sp. and Eucalyptus regnans, and Xyladictyochaetalusitanica on leaf litter of Eucalyptus sp. (Australia); Camarosporidiella mackenziei on twigs of Caragana sp. (Finland); Cyclothyriella rubronotata on twigs of Ailanthus altissima, Rhinocladiella quercus on Sorbus aucuparia branches (Germany); Cytospora viticola on stems of Vitis vinifera (Hungary); Echinocatena arthrinioides on leaves of Acacia crassicarpa (Malaysia); Varicosporellopsis aquatilis from garden soil (Netherlands); Pestalotiopsis hollandica on needles of Cupressus sempervirens (Spain), Pseudocamarosporiumafricanum on twigs of Erica sp. (South Africa), Pseudocamarosporium brabeji on branch of Platanus sp. (Switzerland); Neocucurbitaria cava on leaves of Quercus ilex (UK); Chaetosphaeriamyriocarpaon decaying wood of Carpinus betulus,Haplograhium delicatum on decaying Carpinus betulus wood (Ukraine). Epitypes are designated for: Elsinoë mimosae on leaves of Mimosa diplotricha (Brazil), Neohendersonia kickxii on Fagus sylvatica twig bark (Italy), Caliciopsis maxima on fronds of Niphidium crassifolium (Brazil), Dictyochaeta septata on leaves of Eucalyptus grandis ×urophylla (Chile), and Microdochium musae on leaves of Musa sp. (Malaysia)

    Fungal Planet description sheets : 1182–1283

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand, Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA, Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes.http://www.ingentaconnect.com/content/nhn/pimjBiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc
    • …
    corecore