63 research outputs found

    Two-dimensional phononic-photonic bandgap optomechanical crystal cavity

    Get PDF
    We present the fabrication and characterization of an artificial crystal structure formed from a thin-film of silicon which has a full phononic bandgap for microwave X-band phonons and a two-dimensional pseudo-bandgap for near-infrared photons. An engineered defect in the crystal structure is used to localize optical and mechanical resonances in the bandgap of the planar crystal. Two-tone optical spectroscopy is used to characterize the cavity system, showing a large vacuum coupling rate of 220kHz between the fundamental optical cavity resonance at 195THz and a co-localized mechanical resonance at 9.3GHz.Comment: 4 pages, 4 figure

    Observation of non-Markovian micro-mechanical Brownian motion

    Get PDF
    All physical systems are to some extent open and interacting with their environment. This insight, basic as it may seem, gives rise to the necessity of protecting quantum systems from decoherence in quantum technologies and is at the heart of the emergence of classical properties in quantum physics. The precise decoherence mechanisms, however, are often unknown for a given system. In this work, we make use of an opto-mechanical resonator to obtain key information about spectral densities of its condensed-matter heat bath. In sharp contrast to what is commonly assumed in high-temperature quantum Brownian motion describing the dynamics of the mechanical degree of freedom, based on a statistical analysis of the emitted light, it is shown that this spectral density is highly non-Ohmic, reflected by non-Markovian dynamics, which we quantify. We conclude by elaborating on further applications of opto-mechanical systems in open system identification.Comment: 5+6 pages, 3 figures. Replaced by final versio

    Mechanical overtone frequency combs

    Full text link
    Mechanical frequency combs are poised to bring the applications and utility of optical frequency combs into the mechanical domain. So far, their use has been limited by strict conditions on drive frequencies and power, small bandwidths and complicated modes of operation. We demonstrate a novel, straightforward mechanism to create a frequency comb consisting of mechanical overtones (integer multiples) of a single eigenfrequency, by monolithically integrating a suspended dielectric membrane with a counter-propagating optical trap generated via its own substrate. The periodic optical field modulates the dielectrophoretic force on the membrane at integer multiples of the membrane's frequency of motion, thus efficiently creating overtones of that frequency and forming a frequency comb. Using the same periodic optical field, we simultaneously demonstrate a strong, parametric thermal driving mechanism that requires no additional power or frequency reference. The combination of these effects results in a versatile, easy-to-use mechanical frequency comb platform that requires no precise alignment, no additional feedback or control electronics, and only uses a single, mW continuous wave laser beam. This highlights the mechanical frequency comb as a low-power, on-chip alternative to optical frequency combs for sensing, timing and metrology applications

    On optical forces in spherical whispering gallery mode resonators

    Full text link
    In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular, all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.Comment: To pe published in Optics Express Focus Issue: "Collective phenomena in photonic, plasmonic and hybrid structures

    Quantum mechanical effect of path-polarization contextuality for a single photon

    Full text link
    Using measurements pertaining to a suitable Mach-Zehnder(MZ) type setup, a curious quantum mechanical effect of contextuality between the path and the polarization degrees of freedom of a polarized photon is demonstrated, without using any notion of realism or hidden variables - an effect that holds good for the product as well as the entangled states. This form of experimental context-dependence is manifested in a way such that at \emph{either} of the two exit channels of the MZ setup used, the empirically verifiable \emph{subensemble} statistical properties obtained by an arbitrary polarization measurement depend upon the choice of a commuting(comeasurable) path observable, while this effect disappears for the \emph{whole ensemble} of photons emerging from the two exit channels of the MZ setup.Comment: To be published in IJT

    Experimental test of nonclassicality for a single particle

    Full text link
    In a recent paper [R. Alicki and N. Van Ryn, J. Phys. A: Math. Theor., 41, 062001 (2008)] a test of nonclassicality for a single qubit was proposed. Here, we discuss the class of local realistic theories to which this test applies and present an experimental realization

    Nanomechanical motion measured with precision beyond the standard quantum limit

    Full text link
    Nanomechanical oscillators are at the heart of ultrasensitive detectors of force, mass and motion. As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. For example, if the imprecision of a measurement of an oscillator's position is pushed below the standard quantum limit (SQL), quantum mechanics demands that the motion of the oscillator be perturbed by an amount larger than the SQL. Minimizing this quantum backaction noise and nonfundamental, or technical, noise requires an information efficient measurement. Here we integrate a microwave cavity optomechanical system and a nearly noiseless amplifier into an interferometer to achieve an imprecision below the SQL. As the microwave interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN/rt(Hz). In addition, the demonstrated efficient measurement is a critical step towards entangling mechanical oscillators with other quantum systems.Comment: 5 pages, 4 figure
    • …
    corecore