474 research outputs found

    Potent inhibition of cartilage biosynthesis by coincubation with joint capsule through an IL-1-independent pathway

    Get PDF
    The reason for the increased risk for development of osteoarthritis (OA) after acute joint trauma is not well understood, but the mechanically injured cartilage may be more susceptible to degradative mediators secreted by other tissues in the joint. To establish a model for such interactions, we coincubated bovine cartilage tissue explants together with normal joint capsule and found a profound (āˆ¼70%) reduction in cartilage proteoglycan biosynthesis. This reduction is due to release by the joint capsule of a heat-labile and non-toxic factor. Surprisingly, while cultured synovium is a canonical source of interleukin-1 (IL-1), blockade either by soluble IL-1 type II receptor (sIL-1r) or IL-1 receptor antagonist (IL-1RA) had no effect. Combined blockade of IL-1 and tumor necrosis factor Ī± (TNF-Ī±) also had no effect. To support the clinical relevance of the findings, we harvested joint capsule from post-mortem human knees. Human joint capsule from a normal adult knee also released a substance that caused an āˆ¼40% decrease in cartilage proteoglycan biosynthesis. Furthermore, this inhibition was not affected by IL-1 blockade with either sIL-1r or IL-1RA. These results suggest that joint capsule tissue from a normal knee joint can release an uncharacterized cytokine that potently inhibits cartilage biosynthetic activity by an IL-1- and TNF-independent pathway.Whitaker FoundationGlaxoSmithKlineNational Institutes of Health (U.S.) (grant AR-45779)National Institutes of Health (U.S.). Specialized Centers Of Interdisciplinary Research (grant ARP50-39239

    Proliferative remodeling of the spatial organization of human superficial chondrocytes distant from focal early osteoarthritis

    Get PDF
    Objective Human superficial chondrocytes show distinct spatial organizations, and they commonly aggregate near osteoarthritic (OA) fissures. The aim of this study was to determine whether remodeling or destruction of the spatial chondrocyte organization might occur at a distance from focal (early) lesions in patients with OA. Methods Samples of intact cartilage (condyles, patellofemoral groove, and proximal tibia) lying distant from focal lesions of OA in grade 2 joints were compared with location-matched nondegenerative (grade 0ā€“1) cartilage samples. Chondrocyte nuclei were stained with propidium iodide, examined by fluorescence microscopy, and the findings were recorded in a top-down view. Chondrocyte arrangements were tested for randomness or significant grouping via point pattern analyses (Clark and Evans Aggregation Index) and were correlated with the OA grade and the surface cell densities. Results In grade 2 cartilage samples, superficial chondrocytes were situated in horizontal patterns, such as strings, clusters, pairs, and singles, comparable to the patterns in nondegenerative cartilage. In intact cartilage samples from grade 2 joints, the spatial organization included a novel pattern, consisting of chondrocytes that were aligned in 2 parallel lines, building double strings. These double strings correlated significantly with an increased number of chondrocytes per group and an increased corresponding superficial zone cell density. They were observed in all grade 2 condyles and some grade 2 tibiae, but never in grade 0ā€“1 cartilage. Conclusion This study is the first to identify a distinct spatial reorganization of human superficial chondrocytes in response to distant early OA lesions, suggesting that proliferation had occurred distant from focal early OA lesions. This spatial reorganization may serve to recruit metabolically active units as an attempt to repair focal damage.National Institutes of Health (U.S.) (grant P5O-AR39239)National Institutes of Health (U.S.) (grant R01-AR33236)Deutsche Forschungsgemeinschaft (DFG) (grant RO 2511/1-1)Deutsche Forschungsgemeinschaft (DFG) (grant RO 2511/2-1

    In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint

    Get PDF
    SummaryObjectiveThe purpose of this study was to investigate the in-vivo time-dependent contact behavior of tibiofemoral cartilage of human subjects during the first 300s after applying a constant full body weight loading and determine whether there are differences in cartilage contact responses between the medial and lateral compartments.DesignSix healthy knees were investigated in this study. Each knee joint was subjected to full body weight loading and the in-vivo positions of the knee were captured by two orthogonal fluoroscopes during the first 300s after applying the load. Three-dimensional models of the knee were created from MR images and used to reproduce the in-vivo knee positions recorded by the fluoroscopes. The time-dependent contact behavior of the cartilage was represented using the peak cartilage contact deformation and the cartilage contact area as functions of time under the constant full body weight.ResultsBoth medial and lateral compartments showed a rapid increase in contact deformation and contactĀ area during the first 20s of loading. After 50s of loading, the peak contact deformation values were 10.5Ā±0.8% (medial) and 12.6Ā±3.4% (lateral), and the contact areas were 223.9Ā±14.8mm2 (medial) and 123.0Ā±22.8mm2 (lateral). Thereafter, the peak cartilage contact deformation and contact area remained relatively constant. The respective changing rates of cartilage contact deformation were 1.4Ā±0.9%/s (medial) and 3.1Ā±2.5%/s (lateral); and of contact areas were 40.6Ā±20.8mm2/s (medial) and 24.0Ā±11.4mm2/s (lateral), at the first second of loading. Beyond 50s, both changing rates approached zero.ConclusionsThe peak cartilage contact deformation increased rapidly within the first 20s of loading and remained relatively constant after āˆ¼50s of loading. The time-dependent response of cartilage contact behavior under constant full body weight loading was significantly different in the medial and lateral tibiofemoral compartments, with greater peak cartilage contact deformation on the lateral side and greater contact area on the medial side. These data can provide insight into normal in-vivo cartilage function and provide guidelines for the improvement of ex-vivo cartilage experiments and the validation of computational models that simulate human knee joint contact

    Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules

    Get PDF
    In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ā‰ˆ 2.5 Ī¼m) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecanā€“collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecanā€“collagen interactions. Interestingly, we found a significant increase in aggrecanā€“collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecanā€“collagen adhesion, together with aggrecanā€“aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties.National Science Foundation (U.S.) (Grant CMMI-0758651)National Institutes of Health (U.S.) (Grant AR60331)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship (Grant N00244-09-1-0064))Shriners of North AmericaDrexel University (Faculty Start-up Grant

    Intra-articular Injection of HB-IGF-1 Sustains Delivery of IGF-1 to Cartilage through Binding to Chondroitin Sulfate

    Get PDF
    Objective: Insulin-like growth factor 1 (IGF-1) stimulates cartilage repair but is not a practical therapy due to its short half-life. We have previously modified IGF-1 by adding a heparin-binding domain and have shown that this fusion protein (HB-IGF-1) stimulates sustained proteoglycan synthesis in cartilage. This study was undertaken to examine the mechanism by which HB-IGF-1 is retained in cartilage and to test whether HB-IGF-1 provides sustained growth factor delivery to cartilage in vivo and to human cartilage explants. Methods: Retention of HB-IGF-1 and IGF-1 was analyzed by Western blotting. The necessity of heparan sulfate (HS) or chondroitin sulfate (CS) glycosaminoglycans (GAGs) for binding was tested using enzymatic removal and cells with genetic deficiency of HS. Binding affinities of HB-IGF-1 and IGF-1 proteins for isolated GAGs were examined by surface plasmon resonance and enzyme-linked immunosorbent assay. Results: In cartilage explants, chondroitinase treatment decreased binding of HB-IGF-1, whereas heparitinase had no effect. Furthermore, HS was not necessary for HB-IGF-1 retention on cell monolayers. Binding assays showed that HB-IGF-1 bound both CS and HS, whereas IGF-1 did not bind either. After intraarticular injection in rat knees, HB-IGF-1 was retained in articular and meniscal cartilage, but not in tendon, consistent with enhanced delivery to CS-rich cartilage. Finally, HB-IGF-1 was retained in human cartilage explants but IGF-1 was not. Conclusion: Our findings indicate that after intraarticular injection in rats, HB-IGF-1 is specifically retained in cartilage through its high abundance of CS. Modification of growth factors with heparin-binding domains may be a new strategy for sustained and specific local delivery to cartilage.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant EB-003805)National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant AR-045779

    Delivering Heparin-Binding Insulin-Like Growth Factor 1 with Self-Assembling Peptide Hydrogels

    Get PDF
    Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix production and integration with native tissue.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Institutes of Health (U.S.) (Grant EB003805)National Institutes of Health (U.S.) (Grant AR060331)Whitaker Health Sciences Fund FellowshipMassachusetts Life Sciences CenterBiomeasure, Inc

    Long Term Effects of Chernobyl Contamination on DNA Repair Function and Plant Resistance to Different Biotic and Abiotic Stress Factors

    Get PDF
    Thirty years after the Chernobyl explosion we still lack information regarding the genetic effects of radionuclide contamination on the plant population. For example, are plants adapting to the low dose of chronic ionising irradiation and showing improved resistance to radiation damage? Are they coping with changing/increased pathogenicity of fungi and viruses in the Chernobyl exclusion (ChE) zone? Are plant populations rapidly accumulating mutational load and should we expect rapid micro-evolutionary changes in plants in the Chernobyl area? This review will try to summarise the current knowledge on these aspects of plant genetics and ecology and draw conclusions on the importance of further studies in the area around Chernobyl

    Gender Bias in Internet Employment: A Study of the Effects of Career Advancement Opportunities for Women in the Field of ITC

    Get PDF
    Women as individuals experience subtle discrimination regarding career development opportunities as evidenced by research on the Glass Ceiling. This paper looks at the ramifications of technology, specifically the Internet, and how it affects women\u27s career opportunities

    Which executive functioning deficits are associated with AD/HD, ODD/CD and comorbid AD/HD+ODD/CD?

    Get PDF
    Item does not contain fulltextThis study investigated (1) whether attention deficit/hyperactivity disorder (AD/HD) is associated with executive functioning (EF) deficits while controlling for oppositional defiant disorder/conduct disorder (ODD/CD), (2) whether ODD/CD is associated with EF deficits while controlling for AD/HD, and (3)~whether a combination of AD/HD and ODD/CD is associated with EF deficits (and the possibility that there is no association between EF deficits and AD/HD or ODD/CD in isolation). Subjects were 99~children ages 6ā€“12 years. Three putative domains of EF were investigated using well-validated tests: verbal fluency, working memory, and planning. Independent of ODD/CD, AD/HD was associated with deficits in planning and working memory, but not in verbal fluency. Only teacher rated AD/HD, but not parent rated AD/HD, significantly contributed to the prediction of EF task performance. No EF deficits were associated with ODD/CD. The presence of comorbid AD/HD accounts for the EF deficits in children with comorbid AD/HD+ODD/CD. These results suggest that EF deficits are unique to AD/HD and support the model proposed by R. A. Barkley (1997).17 p
    • ā€¦
    corecore