745 research outputs found

    The measurement of the Higgs self-coupling at the LHC: theoretical status

    Get PDF
    Now that the Higgs boson has been observed by the ATLAS and CMS experiments at the LHC, the next important step would be to measure accurately its properties to establish the details of the electroweak symmetry breaking mechanism. Among the measurements which need to be performed, the determination of the Higgs self-coupling in processes where the Higgs boson is produced in pairs is of utmost importance. In this paper, we discuss the various processes which allow for the measurement of the trilinear Higgs coupling: double Higgs production in the gluon fusion, vector boson fusion, double Higgs-strahlung and associated production with a top quark pair. We first evaluate the production cross sections for these processes at the LHC with center-of-mass energies ranging from the present s=8\sqrt s=8 TeV to s=100\sqrt s=100 TeV, and discuss their sensitivity to the trilinear Higgs coupling. We include the various higher order QCD radiative corrections, at next-to-leading order for gluon and vector boson fusion and at next-to-next-to-leading order for associated double Higgs production with a gauge boson. The theoretical uncertainties on these cross sections are estimated. Finally, we discuss the various channels which could allow for the detection of the double Higgs production signal at the LHC and the accuracy on the self-coupling that could be ultimately achieved.Comment: 37 pages, 10 tables, 17 figures. Typos corrected, matches the journal versio

    Extension of Bethe's diffraction model to conical Geometry: application to near field optics

    Full text link
    The generality of the Bethe's two dipole model for light diffraction through a subwavelength aperture in a conducting plane is studied in the radiation zone for coated conical fiber tips as those used in near field scanning optical microscopy. In order to describe the angular radiated power of the tip theoretically, we present a simple, analytical model for small apertures (radius < 40 nm) based on a multipole expansion. Our model is able to reproduce the available experimental results. It proves relatively insensitive to cone angle and aperture radius and contains, as a first approximation, the empirical two-dipole model proposed earlier

    Theory of imaging a photonic crystal with transmission near-field optical microscopy

    Full text link
    While near-field scanning optical microscopy (NSOM) can provide optical images with resolution much better than the diffraction limit, analysis and interpretation of these images is often difficult. We present a theory of imaging with transmission NSOM that includes the effects of tip field, tip/sample coupling, light propagation through the sample and light collection. We apply this theory to analyze experimental NSOM images of a nanochannel glass (NCG) array obtained in transmission mode. The NCG is a triangular array of dielectric rods in a dielectric glass matrix with a two-dimensional photonic band structure. We determine the modes for the NCG photonic crystal and simulate the observed data. The calculations show large contrast at low numerical aperture (NA) of the collection optics and detailed structure at high NA consistent with the observed images. We present calculations as a function of NA to identify how the NCG photonic modes contribute to and determine the spatial structure in these images. Calculations are presented as a function of tip/sample position, sample index contrast and geometry, and aperture size to identify the factors that determine image formation with transmission NSOM in this experiment.Comment: 28 pages of ReVTex, 14 ps figures, submitted to Phys. Rev.

    Local Optical Spectroscopy in Quantum Confined Systems: A Theoretical Description

    Get PDF
    A theoretical description of local absorption is proposed in order to investigate spectral variations on a length scale comparable with the extension of the relevant quantum states. A general formulation is derived within the density-matrix formalism including Coulomb correlation, and applied to the prototypical case of coupled quantum wires. The results show that excitonic effects may have a crucial impact on the local absorption with implications for the spatial resolution and the interpretation of near-field optical spectra.Comment: To appear in Phys. Rev. Lett. - 11 pages, 3 PostScript figures (1 figure in colors) embedded. Uses RevTex, and psfig style

    Probing for Invisible Higgs Decays with Global Fits

    Full text link
    We demonstrate by performing a global fit on Higgs signal strength data that large invisible branching ratios Br_{inv} for a Standard Model (SM) Higgs particle are currently consistent with the experimental hints of a scalar resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find Br_{inv} < 0.64 (95 % CL) from a global fit to individual channel signal strengths supplied by ATLAS, CMS and the Tevatron collaborations. Novel tests that can be used to improve the prospects of experimentally discovering the existence of a Br_{inv} with future data are proposed. These tests are based on the combination of all visible channel Higgs signal strengths, and allow us to examine the required reduction in experimental and theoretical errors in this data that would allow a more significantly bounded invisible branching ratio to be experimentally supported. We examine in some detail how our conclusions and method are affected when a scalar resonance at this mass scale has couplings deviating from the SM ones.Comment: 32pp, 15 figures v2: JHEP version, ref added & comment added after Eq.

    How do we get there? Effects of cognitive aging on route memory

    Get PDF
    © 2017 The Author(s) Research into the effects of cognitive aging on route navigation usually focuses on differences in learning performance. In contrast, we investigated age-related differences in route knowledge after successful route learning. One young and two groups of older adults categorized using different cut-off scores on the Montreal Cognitive Assessment (MoCA), were trained until they could correctly recall short routes. During the test phase, they were asked to recall the sequence in which landmarks were encountered (Landmark Sequence Task), the sequence of turns (Direction Sequence Task), the direction of turn at each landmark (Landmark Direction Task), and to identify the learned routes from a map perspective (Perspective Taking Task). Comparing the young participant group with the older group that scored high on the MoCA, we found effects of typical aging in learning performance and in the Direction Sequence Task. Comparing the two older groups, we found effects of early signs of atypical aging in the Landmark Direction and the Perspective Taking Tasks. We found no differences between groups in the Landmark Sequence Task. Given that participants were able to recall routes after training, these results suggest that typical and early signs of atypical aging result in differential memory deficits for aspects of route knowledge

    AAV-p40 Bioengineering Platform for Variant Selection Based on Transgene Expression

    Get PDF
    The power of AAV directed evolution for identifying novel vector variants with improved properties is well established, as evidenced by numerous publications reporting novel AAV variants. However, most capsid variants reported to date have been identified using either replication-competent selection platforms or PCR-based capsid DNA recovery methods, which can bias the selection towards efficient replication or unproductive intracellular trafficking, respectively. A central objective of this study was to validate a functional transduction (FT)-based method for rapid identification of novel AAV variants based on AAV capsid mRNA expression in target cells. We performed a comparison of the FT platform to existing replication competent strategies. Based on the selection kinetics and function of novel capsids identified in an in vivo screen in a xenograft model of human hepatocytes, we identified the mRNA-based FT selection as the most optimal AAV selection method. Lastly, to gain insight into the mRNA-based selection mechanism driven by the native AAV-p40 promoter, we studied its activity in a range of in vitro and in vivo targets. We found AAV-p40 to be a ubiquitously active promoter that can be modified for cell type-specific expression by incorporating binding sites for silencing transcription factors, allowing for cell-type-specific library selection
    • …
    corecore