6 research outputs found

    Effectiveness and Safety of Transthoracic Ultrasound in Guiding Percutaneous Needle Biopsy in the Lung and Comparison vs. CT Scan in Assessing Morphology of Subpleural Consolidations

    Get PDF
    (1) Background: The aim of this study was to conduct a prospective analysis on the diagnostic accuracy of transthoracic ultrasound-guided percutaneous needle biopsy (TUS-PNB) for the histological assessment of peripheral lung lesions and to assess the performance of transthoracic ultrasound (TUS) examination vs. chest CT (gold standard) in the differentiation between malignant and benign peripheral lung lesions. (2) Methods: A total of 961 consecutive patients with subpleural pulmonary lesions were enrolled. All the patients received a CT scan with contrast; 762 patients underwent TUS-PTNB for suspicion of malignancy, and the remaining 199 enrolled patients underwent only TUS examination as a part of routine follow-up for known non-malignant subpleural consolidations. (3) Results: Among the 762 TUS-guided biopsies, there were 627 (82.28%) malignant lesions, 82 (10.76%) benign lesions, and 53 (6.96%) indeterminate lesions. The overall diagnostic accuracy was 93.04%. The rates of pneumothorax not requiring chest-tube insertion and self-limited hemoptysis were 0.79 and 0.26%, respectively. Patients were divided into two groups based on the benign or malignant nature of the subpleural consolidations. On TUS, both malignant and benign lesions showed mostly irregular margins and a hypoechoic pattern, but no differences were assessed in terms of sonographic margins and pattern between the two groups. There was poor agreement between TUS and chest CT in assessing air bronchograms and necrotic areas. The only finding in the detection of which TUS showed superiority compared to chest-CT was pleural effusion. (4) Conclusions: TUS-PNB was confirmed to be an effective and safe diagnostic method for peripheral pulmonary consolidation, but their sonographic pattern did not allow to rule out a malignant nature. A pre-operative evaluation on CT images, combined with the possibility of performing additional immunohistochemical and cytological investigations and the experience of the medical staff, may improve the diagnostic yield of TUS-guided biopsies

    Assessment of thoracic ultrasound in complementary diagnosis and in follow up of community-acquired pneumonia (cap)

    No full text
    Abstract Background Chest X-ray (CXR) is the primary diagnostic tool for community-acquired pneumonia (CAP). Some authors recently proposed that thoracic ultrasound (TUS) could valuably flank or even reliably substitute CXR in the diagnosis and follow-up of CAP. We investigated the clinical utility of TUS in a large sample of patients with CAP, to challenge the hypothesis that it may be a substitute for CXR. Methods Out of 645 consecutive patients with a CXR-confirmed CAP diagnosed in the emergency room of our hospital over a three-years period, 510 were subsequently admitted to our department of Internal Medicine. These patients were evaluated by TUS by a well-trained operator who was blinded of the initial diagnosis. TUS scans were performed both at admission and repeated at day 4-6th and 9-14th during stay. Results TUS identified 375/510 (73.5%) of CXR-confirmed lesions, mostly located in posterior-basal or mid-thoracic areas of the lungs. Pleural effusion was detected in 26.9% of patients by CXR and in 30.4% by TUS. TUS documented the change in size of the consolidated areas as follows: 6.3 ± 3.4 cm at time 0, 2.5 ± 1.8 at 4-6 d, 0.9 ± 1.4 at 9-14 d. Out of the 12 patients with delayed CAP healing, 7 of them turned out to have lung cancer. Conclusions TUS allowed to detect lung consolidations in over 70% of patients with CXR-confirmed CAP, but it gave false negative results in 26.5% of cases. Our longitudinal results confirm the role of TUS in the follow-up of detectable lesions. Thus, TUS should be regarded as a complementary and monitoring tool in pneumonia, instead of a primary imaging modality

    Thoracic ultrasound combined with low-dose computed tomography may represent useful screening strategy in highly exposed population in the industrial city of Taranto (Italy)

    Get PDF
    ObjectivesWe validated a screening protocol in which thoracic ultrasound (TUS) acts as a first-line complementary imaging technique in selecting patients which may deserve a second-line low-dose high resolution computed tomography (HRCT) scan among a population of asymptomatic high-risk subjects for interstitial lung abnormalities (ILA) and lung cancer. Due to heavy environmental pollution burden, the district Tamburi of Taranto has been chosen as “case study” for this purpose.MethodsFrom July 2018 to October 2020, 677 patients aged between 45 and 65 year and who had been living in the Tamburi district of Taranto for at least 10 years were included in the study. After demographic, clinical and risk factor exposition data were collected, each participant underwent a complete TUS examination. These subjects were then asked to know if they agreed to perform a second-level examination by low-dose HRCT scan.ResultsOn a total of 167 subjects (24.7%) who agreed to undergo a second-level HRCT, 85 patients (50.9%) actually showed pleuro-pulmonary abnormalities. Interstitial abnormalities were detected in a total of 36 patients on HRCT scan. In particular, 34 participants presented subpleural ILAs, that were classified in the fibrotic subtype in 7 cases. The remaining 2 patients showed non-subpleural interstitial abnormalities. Subpleural nodules were observed in 46 patients. TUS showed an overall diagnostic accuracy of 88.6% in detecting pleuro-pulmonary abnormalities in comparison with HRCT scan, with a sensitivity of 95.3%, a specificity of 81.7%, a positive predictive value of 84.4% and a negative predictive value of 94.4%. The matched evaluation of specific pulmonary abnormalities on HRTC scan (i.e., interstitial abnormalities or pulmonary nodules) with determinate sonographic findings revealed a reduction in both TUS sensibility and specificity. Focusing TUS evaluation on the assessment of interstitial abnormalities, a thickened pleural line showed a sensitivity of 63.9% and a specificity of 69.5%, hypoechoic striae showed a sensitivity of 38.9% and a specificity of 90.1% and subpleural nodules showed a sensitivity of 58.3% and a specificity of 77.1%. Regarding to the assessment of subpleural nodules, TUS showed a sensitivity of 60.9% and a specificity of 81.0%. However, the combined employment of TUS examination and HRCT scans allowed to identify 34 patients with early subpleural ILA and to detect three suspicious pulmonary nodules (of which two were intraparenchymal and one was a large subpleural mass), which revealed to be lung cancers on further investigations.ConclusionA first-line TUS examination might aid the identification of subjects highly exposed to environmental pollution, who could benefit of a second-line low-dose HRCT scan to find early interstitial lung diseases as well as lung cancer.Protocol registration codePLEURO-SCREENING-V1.0_15 Feb, 17
    corecore