309 research outputs found

    Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers

    Get PDF
    Poly (ADP-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapies have been found to be particularly effective in tumors that harbor deleterious germline or somatic mutations in the BRCA1 or BRCA2 genes, the products of which contribute to the conservative homologous recombination repair of DNA double-strand breaks. Nonetheless, several setbacks in clinical trial settings have highlighted some of the issues surrounding the investigation of PARP inhibitors, especially the identification of patients who stand to benefit from such drugs. One potential approach to finding this patient subpopulation is to examine the tumor DNA for evidence of a homologous recombination defect. However, although the genomes of many breast and ovarian cancers are replete with aberrations, the presence of numerous factors able to shape the genomic landscape means that only some of the observed DNA abnormalities are the outcome of a cancer cell’s inability to faithfully repair DNA double-strand breaks. Consequently, recently developed methods for comprehensively capturing the diverse ways in which homologous recombination deficiencies may arise beyond BRCA1/2 mutation have used DNA microarray and sequencing data to account for potentially confounding features in the genome. Scores capturing telomeric allelic imbalance, loss of heterozygosity (LOH) and large scale transition score, as well as the total number of coding mutations are measures that summarize the total burden of certain forms of genomic abnormality. By contrast, other studies have comprehensively catalogued different types of mutational pattern and their relative contributions to a given tumor sample. Although at least one study to explore the use of the LOH scar in a prospective clinical trial of a PARP inhibitor in ovarian cancer is under way, limitations that result in a relatively low positive predictive value for these biomarkers remain. Tumors whose genome has undergone one or more events that restore high-fidelity homologous recombination are likely to be misclassified as double-strand break repair-deficient and thereby sensitive to PARP inhibitors and DNA damaging chemotherapies as a result of prior repair deficiency and its genomic scarring. Therefore, we propose that integration of a genomic scar-based biomarker with a marker of resistance in a high genomic scarring burden context may improve the performance of any companion diagnostic for PARP inhibitors

    Issues and missed opportunities in lymph node assessment post neoadjuvant chemotherapy

    Get PDF
    Assessment of axillary lymph nodes in breast cancer patients following neoadjuvant chemotherapy (NACT) is a crucial part of the clinical and pathological assessment of the disease and has prognostic and management implications. This, however, currently lacks standardisation and focuses only on the number of lymph nodes with metastases still present, the largest metastasis and the presence of pathological complete response. Potential changes in any residual disease or within the lymph node parenchyma are not examined. Novel methods of more nuanced approaches are rare in the literature, even when considering multiple cancer types, but can offer an insight into the potential additional information to be gained and improvement in patient stratification. Given how common NACT is as the backbone of cancer therapy, there is a surprising lack of research into the lymph node response and determination of the biological factors driving what is seen histologically. Furthermore, with NACT now being administered alongside immunotherapy, there is an increasing need to understand the functional and architectural changes induced in the lymph nodes by metastatic tumour and systemic therapies.This review will summarise current approaches, with breast cancer as an exemplar, and will discuss the literature investigating a possible more granular approach to lymph node assessment after NACT. Translating these multiple carcinoma studies to breast cancer patients may prompt tissue-based research, and with clinical validation studies, changes to the reporting of lymph node response, for example percentage of viable tumour and immunological architectural features such as germinal centres

    Protocol for Rapid 5-plex 3D Imaging and Single-Cell Analysis of Immune Responses in Whole Murine Lymph Nodes

    Get PDF
    Lymph nodes orchestrate adaptive immune responses, with germinal centers enabling affinity maturation and plasma cell formation. Here, we present a protocol for rapid, high-resolution, multicolor 3D imaging of whole immunized mouse lymph nodes. We describe steps for immunization, lymph node harvesting, fixation, permeabilization, staining and clearing. We cover image acquisition using a lightsheet fluorescence microscope and analysis using the Imaris software. This protocol allows the quantification of germinal center B cells, plasma cells and follicular T cells at single-cell resolution

    Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC

    Get PDF
    BACKGROUND: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC). The F i-CAR-T is designed to release an anti-PD-1 checkpoint inhibitor upon CAR-T cell activation within the TME, facilitating activation of CAR-T cells and TILs while limiting toxicity. METHODS: To bolster potency, we developed a F i-CAR construct capable of IL-2-mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumor microenvironment, following ROR1-mediated activation. Cytotoxic responses against TNBC cell lines as well as levels and binding functionality of released payload were analyzed in vitro by ELISA and flow cytometry. In vivo assessment of potency of F i-CAR-T cells was performed in a TNBC NSG mouse model. RESULTS: F i-CAR-T cells released measurable levels of anti-PD-1 payload with 5 h of binding to ROR1 on tumor and enhanced the cytotoxic effects at challenging 1:10 E:T ratios. Treatment of established PDL1 + TNBC xenograft model with F i-CAR-T cells resulted in significant abrogation in tumor growth and improved survival of mice (71 days), compared to non-armored CAR cells targeting ROR1 (F CAR-T) alone (49 days) or in combination with systemically administered anti-PD-1 antibody (57 days). Crucially, a threefold increase in tumor-infiltrating T cells was observed with F i-CAR-T cells and was associated with increased expression of genes related to cytotoxicity, migration and proliferation. CONCLUSIONS: Our next-generation of ROR1-targeting inducible armored CAR platform enables the release of an immune stimulating payload only in the presence of target tumor cells, enhancing the therapeutic activity of the CAR-T cells. This technology provided a significant survival advantage in TNBC xenograft models. This coupled with its potential safety attributes merits further clinical evaluation of this approach in TNBC patients

    Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC

    Get PDF
    BACKGROUND: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC). The F i-CAR-T is designed to release an anti-PD-1 checkpoint inhibitor upon CAR-T cell activation within the TME, facilitating activation of CAR-T cells and TILs while limiting toxicity. METHODS: To bolster potency, we developed a F i-CAR construct capable of IL-2-mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumor microenvironment, following ROR1-mediated activation. Cytotoxic responses against TNBC cell lines as well as levels and binding functionality of released payload were analyzed in vitro by ELISA and flow cytometry. In vivo assessment of potency of F i-CAR-T cells was performed in a TNBC NSG mouse model. RESULTS: F i-CAR-T cells released measurable levels of anti-PD-1 payload with 5 h of binding to ROR1 on tumor and enhanced the cytotoxic effects at challenging 1:10 E:T ratios. Treatment of established PDL1 + TNBC xenograft model with F i-CAR-T cells resulted in significant abrogation in tumor growth and improved survival of mice (71 days), compared to non-armored CAR cells targeting ROR1 (F CAR-T) alone (49 days) or in combination with systemically administered anti-PD-1 antibody (57 days). Crucially, a threefold increase in tumor-infiltrating T cells was observed with F i-CAR-T cells and was associated with increased expression of genes related to cytotoxicity, migration and proliferation. CONCLUSIONS: Our next-generation of ROR1-targeting inducible armored CAR platform enables the release of an immune stimulating payload only in the presence of target tumor cells, enhancing the therapeutic activity of the CAR-T cells. This technology provided a significant survival advantage in TNBC xenograft models. This coupled with its potential safety attributes merits further clinical evaluation of this approach in TNBC patients

    Digital imaging in the immunohistochemical evaluation of the proliferation markers Ki67, MCM2 and Geminin, in early breast cancer, and their putative prognostic value

    Get PDF
    BACKGROUND: Immunohistochemical assessment of proliferation may provide additional prognostic information in early breast cancer. However, due to a lack of methodological standards proliferation markers are still not routinely used for determining therapy. Even for Ki67, one of the most widely-studied markers, disagreements over the optimal cutoff exist. Improvements in digital microscopy may provide new avenues to standardise and make data more reproducible.METHODS: We studied the immunohistochemical expression of three markers of proliferation: Ki67, Mini-Chromosome Maintenance protein 2 and Geminin, by conventional light microscope and digital imaging on triplicate TMAs from 309 consecutive cases of primary breast cancers. Differences between the average and the maximum percentage reactivity in tumour cell nuclei from the three TMA cores were investigated to assess the validity of the approach. Time-dependent Receiver Operating Characteristic curves were utilized to obtain optimal expression level cut-offs, which were then correlated with clinico-pathological features and survival.RESULTS: High concordance between conventional and digital scores was observed for all 3 markers (Ki67: rs = 0.87, P &lt; 0.001; MCM2: rs = 0.94, P &lt; 0.001; and Geminin: rs = 0.86, P &lt; 0.001; Spearman's rank). There was no significant difference according to the number of TMA cores included for either Ki67 or MCM2; analysis of two or three cores produced comparable results. Higher levels of all three proliferation markers were significantly associated with higher grade (P &lt; 0.001) and ER-negativity (P &lt; 0.001). Optimal prognostic cut-offs for percentage expression in the tumour were 8 %, 12 and 2.33 % for Ki67, MCM2 and Geminin respectively. All 3 proliferation marker cutoffs were predictive of 15-year breast cancer-specific survival in univariable Cox regression analyses. In multivariable analysis only lymph node status (HR = 3.9, 95 % CI = 1.79-8.5, P = 0.0006) and histological grade (HR = 1.84, 95 % CI = 1-3.38, P = 0.05) remained significantly prognostic.CONCLUSIONS: Here we show that. MCM2 is a more sensitive marker of proliferation than Ki67 and should be examined in future studies, especially in the lymph node-negative, hormone receptor-positive subgroup. Further, digital microscopy can be used effectively as a high-throughput method to evaluate immunohistochemical expression.</p

    Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues

    Get PDF
    Background: More than 20% of human transcripts have naturally occurring antisense products (or natural antisense transcripts – NATs), some of which may play a key role in a range of human diseases. To date, several databases of in silico defined human sense-antisense (SAS) pairs have appeared, however no study has focused on differential expression of SAS pairs in breast tissue. We therefore investigated the expression levels of sense and antisense transcripts in normal and malignant human breast epithelia using the Affymetrix HG-U133 Plus 2.0 and Almac Diagnostics Breast Cancer DSA microarray technologies as well as massively parallel signature sequencing (MPSS) data. Results: The expression of more than 2500 antisense transcripts were detected in normal breast duct luminal cells and in primary breast tumors substantially enriched for their epithelial cell content by DSA microarray. Expression of 431 NATs were confirmed by either of the other two technologies. A corresponding sense transcript could be identified on DSA for 257 antisense transcripts. Of these SAS pairs, 163 have not been previously reported. A positive correlation of differential expression between normal and malignant breast samples was observed for most SAS pairs. Orientation specific RT-QPCR of selected SAS pairs validated their expression in several breast cancer cell lines and solid breast tumours. Conclusion: Disease-focused and antisense enriched microarray platforms (such as Breast Cancer DSA) confirm the assumption that antisense transcription in the human breast is more prevalent than previously anticipated. Expression of a proportion of these NATs has already been confirmed by other technologies while the true existence of the remaining ones has to be validated. Nevertheless, future studies will reveal whether the relative abundances of antisense and sense transcripts have regulatory influences on the translation of these mRNAs

    Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate

    Get PDF
    Background: Understanding the molecular control of cell lineages and fate determination in complex tissues is key to not only understanding the developmental biology and cellular homeostasis of such tissues but also for our understanding and interpretation of the molecular pathology of diseases such as cancer. The prerequisite for such an understanding is detailed knowledge of the cell types that make up such tissues, including their comprehensive molecular characterisation. In the mammary epithelium, the bulk of the tissue is composed of three cell lineages, namely the basal/myoepithelial, luminal epithelial estrogen receptor positive and luminal epithelial estrogen receptor negative cells. However, a detailed molecular characterisation of the transcriptomic differences between these three populations has not been carried out. Results: A whole transcriptome analysis of basal/myoepithelial cells, luminal estrogen receptor negative cells and luminal estrogen receptor positive cells isolated from the virgin mouse mammary epithelium identified 861, 326 and 488 genes as highly differentially expressed in the three cell types, respectively. Network analysis of the transcriptomic data identified a subpopulation of luminal estrogen receptor negative cells with a novel potential role as non-professional immune cells. Analysis of the data for potential paracrine interacting factors showed that the basal/myoepithelial cells, remarkably, expressed over twice as many ligands and cell surface receptors as the other two populations combined. A number of transcriptional regulators were also identified that were differentially expressed between the cell lineages. One of these, Sox6, was specifically expressed in luminal estrogen receptor negative cells and functional assays confirmed that it maintained mammary epithelial cells in a differentiated luminal cell lineage. Conclusion: The mouse mammary epithelium is composed of three main cell types with distinct gene expression patterns. These suggest the existence of a novel functional cell type within the gland, that the basal/myoepithelial cells are key regulators of paracrine signalling and that there is a complex network of differentially expressed transcription factors controlling mammary epithelial cell fate. These data will form the basis for understanding not only cell fate determination and cellular homeostasis in the normal mammary epithelium but also the contribution of different mammary epithelial cell types to the etiology and molecular pathology of breast disease

    Molecular patterns of cancer colonisation in lymph nodes of breast cancer patients

    Get PDF
    Lymph node (LN) metastasis is an important prognostic parameter in breast carcinoma, a crucial site for tumour-immune cell interaction and a gateway for further dissemination of tumour cells to other metastatic sites. To gain insight into the underlying molecular changes from the pre-metastatic, via initial colonisation to the fully involved LN, we reviewed transcriptional research along the evolving microenvironment of LNs in human breast cancers patients. Gene expression studies were compiled and subjected to pathway-based analyses, with an emphasis on immune cell related genes. Of 366 studies, 14 performed genomewide gene expression comparisons and were divided into six clinical-biological scenarios capturing different stages of the metastatic pathway in the LN, as follows: metastatically involved LNs are compared to their patient-matched primary breast carcinomas (scenario 1) or the normal breast tissue (scenario 2). In scenario 3, uninvolved LNs were compared between LN-positive patients and LN-negative patients. Scenario 4 homed into the residual uninvolved portion of involved LNs and compared it to the patient-matched uninvolved LNs. Scenario 5 contrasted uninvolved and involved LNs; whilst in scenario 6 involved (sentinel) LNs were assessed between patients with other either positive or negative LNs (non-sentinel). Gene lists from these chronological steps of LN metastasis indicated that gene patterns reflecting deficiencies in dendritic cells, hyper-proliferation of B cells parallel to tumour promoting pathways, including cell adhesion, extracellular matrix remodelling, cell motility and DNA repair play key-roles in the changing microenvironment of a pro-metastatic to a metastatically involved LN. Similarities between uninvolved LNs and the residual uninvolved portion of involved LNs hinted that LN alterations expose systemic tumour-related immune responses in breast cancer patients. Despite the diverse settings, gene expression patterns at different staged of metastatic colonisation in LNs were recognised, and may provide potential avenues for clinical interventions to counteract disease progression for breast cancer patients.<br/

    A four-gene decision tree signature classification of triple-negative breast cancer: Implications for targeted therapeutics:Integrative analysis of triple-negative breast cancers

    Get PDF
    The molecular complexity of triple-negative breast cancers (TNBCs) provides a challenge for patient management. We set out to characterise this heterogeneous disease by combining transcriptomics and genomics data, with the aim of revealing convergent pathway dependencies with the potential for treatment intervention. A Bayesian algorithm was used to integrate molecular profiles in two TNBC cohorts, followed by validation using five independent cohorts (n = 1,168), including three clinical trials. A four-gene decision tree signature was identified which robustly classified TNBCs into six subtypes. All four genes in the signature (EXO1, TP53BP2, FOXM1 and RSU1) are associated with either genomic instability, malignant growth, or treatment response. One of the six subtypes, MC6, encompassed the largest proportion of tumours (~50%) in early diagnosed TNBCs. In TNBC patients with metastatic disease, the MC6 proportion was reduced to 25%, and was independently associated with a higher response rate to platinum-based chemotherapy. In TNBC cell line data, platinum-sensitivity was recapitulated, and a sensitivity to the inhibition of the phosphatase PPM1D was revealed. Molecularly, MC6-TNBCs displayed high levels of telomeric allelic imbalances, enrichment of CD4+ and CD8+ immune signatures, and reduced expression of genes negatively regulating the mitogen-activated protein kinase (MAPK) signalling pathway. These observations suggest that our integrative classification approach may identify TNBC patients with discernible and theoretically pharmacologically tractable features that merit further studies in prospective trials
    corecore