16 research outputs found

    Investigation and management of a raised serum ferritin

    Get PDF
    Serum ferritin level is one of the most commonly requested investigations in both primary and secondary care. Whilst low serum ferritin levels invariably indicate reduced iron stores, raised serum ferritin levels can be due to multiple different aetiologies, including iron overload, inflammation, liver or renal disease, malignancy, and the recently described metabolic syndrome. A key test in the further investigation of an unexpected raised serum ferritin is the serum transferrin saturation. This guideline reviews the investigation and management of a raised serum ferritin level. The investigation and management of genetic haemochromatosis is not dealt with however and is the subject of a separate guideline

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Variants in PCSK7, PNPLA3 and TM6SF2 are risk factors for the development of cirrhosis in hereditary haemochromatosis

    Get PDF
    BACKGROUND: Cirrhosis develops in <10% of individuals homozygous for the C282Y variant in the homeostatic iron regulator (HFE) gene. Carriage of PCSK7:rs236918 is associated with an increased risk of cirrhosis in this population. AIM: To determine if genetic variants significantly associated with the risk of alcohol- and NAFLD-related cirrhosis also modulate the cirrhosis risk in C282Y homozygotes. METHODS: Variants in PCSK7, PNPLA3, TM6SF2, MBOAT7 and HSD17B13 were genotyped in 1319 C282Y homozygotes, from six European countries, of whom 171 (13.0%) had cirrhosis. Genotypic and allelic associations with the risk for developing cirrhosis were assessed, adjusting for age and sex. Fixed effects meta-analyses of the adjusted summary data for each country were performed. Post hoc association testing was undertaken in the 131 (76.6%) cases and 299 (26.0%) controls with available liver histology. RESULTS: Significant associations were observed between PCSK7:rs236918 (OR = 1.52 [95% CI 1.06-2.19]; P = 0.022; I2  = 0%); PNPLA3:rs738409 (OR = 1.60 [95% CI 1.22-2.11]; P = 7.37 × 10-4 ; I2  = 45.5%) and TM6SF2:rs58542926 (OR = 1.94 [95% CI 1.28-2.95]; P = 1.86 × 10-3 ; I2  = 0%) and the cirrhosis risk in C282Y homozygotes. These findings remained significant in the subpopulation with available liver histology. The population-attributable fractions were 5.6% for PCSK7:rs236918, 13.8% for PNPLA3:rs738409, 6.5% for TM6SF2:rs58542926 and 24.0% for carriage of all three variants combined. CONCLUSIONS: The risk of cirrhosis associated with carriage of PCSK7:rs236918 was confirmed in this much larger population of C282Y homozygotes. In addition, PNPLA3:rs738409 and TM6SF2:rs58542926 were established as significant additional risk factors. More detailed genetic testing of C282Y homozygotes would allow risk stratification and help guide future management

    Reduction of artefacts caused by hip implants in CT-based attenuation-corrected PET images using 2-D interpolation of a virtual sinogram on an irregular grid

    Get PDF
    Metallic prosthetic replacements, such as hip or knee implants, are known to cause strong streaking artefacts in CT images. These artefacts likely induce over- or underestimation of the activity concentration near the metallic implants when applying CT-based attenuation correction of positron emission tomography (PET) images. Since this degrades the diagnostic quality of the images, metal artefact reduction (MAR) prior to attenuation correction is required

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    Polygenic prediction of body mass index and obesity through the life course and across ancestries

    Get PDF
    Polygenic scores (PGSs) for body mass index (BMI) may guide early prevention and targeted treatment of obesity. Using genetic data from up to 5.1 million people (4.6% African ancestry, 14.4% American ancestry, 8.4% East Asian ancestry, 71.1% European ancestry and 1.5% South Asian ancestry) from the GIANT consortium and 23andMe, Inc., we developed ancestry-specific and multi-ancestry PGSs. The multi-ancestry score explained 17.6% of BMI variation among UK Biobank participants of European ancestry. For other populations, this ranged from 16% in East Asian-Americans to 2.2% in rural Ugandans. In the ALSPAC study, children with higher PGSs showed accelerated BMI gain from age 2.5 years to adolescence, with earlier adiposity rebound. Adding the PGS to predictors available at birth nearly doubled explained variance for BMI from age 5 onward (for example, from 11% to 21% at age 8). Up to age 5, adding the PGS to early-life BMI improved prediction of BMI at age 18 (for example, from 22% to 35% at age 5). Higher PGSs were associated with greater adult weight gain. In intensive lifestyle intervention trials, individuals with higher PGSs lost modestly more weight in the first year (0.55 kg per s.d.) but were more likely to regain it. Overall, these data show that PGSs have the potential to improve obesity prediction, particularly when implemented early in life

    Diagnosis and therapy of genetic haemochromatosis (review and 2017 update)

    No full text
    Genetic haemochromatosis (GH) is one of the most frequentgenetic disorders found in Northern Europeans. GH is a condition caused by continued absorption of iron from the upper small intestine, despite normal, and then increased, total body iron. This leads to accumulation of iron in the tissues as the body has no means of getting rid of excess iron.In advanced disease, iron accumulation causes widespread tissue damage, including diabetes mellitus and cirrhosis. The disorder is inherited in autosomal recessive fashion. The gene involved lies close to the HLA-A region on chromosome 6. This updated guideline follows on from the previously published guideline commissioned by the British Committee forStandards in Haematology in February 2000 (Dooley & Wor-wood, 2000). This review and updated guidance coincides with the development of a separate guideline on the investigation and management of a raised serum ferritin, also commissioned by the BSH guidelines committee
    corecore