655 research outputs found
Allometry of sodium requirements and mineral lick use among herbivorous mammals
Sodium (Na) plays a critical role in the functioning of terrestrial ecosystems. In Na-poor regions, plant consumers may experience Na deficiency and adapt by seeking supplementary Na resources. This can markedly impact animal behavior, space-use, and co-existence, with concomitant impacts on ecosystems. Many studies have noted that Na-seeking behaviors, such as soil consumption from mineral licks, are predominately observed for larger-bodied herbivores. However, the mechanisms that drive interspecific variation in Na deficiency and mineral lick use remain poorly understood. Here, we examine whether allometric scaling of Na requirements can explain variation in mineral lick use by herbivorous and omnivorous mammals. We 1) collated data from published literature to derive an allometric scaling of Na requirements in mammals, 2) compared predicted Na requirements to estimated Na intake of mammal communities in three globally distant sites: the Peruvian Amazon, Kalahari Desert, and Malaysian Borneo and 3) examined the relationship between predicted Na deficiency and mineral lick use utilizing camera-trap and mammal abundance data at each site. We found that minimum daily Na maintenance requirements in mammals scaled allometrically at a higher factor (BM0.91 (CI: 0.80–1.0)) than that of food and water Na intake (BM0.71–0.79), indicating that larger species may be more susceptible to Na limitation. This aligned with a positive association between mineral lick use and body mass (BM), as well as Na deficiency, by species at all sites, and increased artificial salt and mineral lick consumption by larger-bodied mammals in the Kalahari. Our results suggest that larger herbivores may be more sensitive to anthropogenic impacts to Na availability, which may alter their functional roles in ecosystems, particularly in Na-poor regions. Further research is needed to explore the consequences of changing Na availability on animals and ecosystems, as well as advance our understanding of Na physiology in mammals
Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice
Embolic stroke results in a necrotic core of cells destined to die, but also a peri-ischemic, watershed penumbral region of potentially salvageable brain tissue. Approaches to effectively differentiate between the ischemic and peri-ischemic zones is critical for novel therapeutic discovery to improve outcomes in survivors of stroke. MicroRNAs are a class of small non-coding RNAs regulating gene translation that have region- and cell-specific expression and responses to ischemia. We have previously reported that global inhibition of cerebral microRNA200c after experimental stroke in mice is protective, however delineating the post-stroke sub-regional and celltype specific patterns of post-stroke miR-200c expression are necessary to minimize off-target effects and advance translational application. Here, we detail a novel protocol to visualize regional miR-200c expression after experimental stroke, complexed with visualization of regional ischemia and markers of oxidative stress in an experimental stroke model in mice. In the present study we demonstrate that the fluorescent hypoxia indicator pimonidazole hydrochloride, the reactive-oxygen-species marker 8-hydroxy-deoxyguanosine, neuronal marker MAP2 and NeuN, and the reactive astrocyte marker GFAP can be effectively complexed to determine regional differences in ischemic injury as early as 30 min post-reperfusion after experimental stroke, and can be effectively used to distinguish ischemic core from surrounding penumbral and unaffected regions for targeted therapy. This multi-dimensional post-stroke immunofluorescent imaging protocol enables a greater degree of subregional mechanistic investigation, with the ultimate goal of developing more effective post-stroke pharmaceutical therapy.Peer reviewe
First Detection of HCO Absorption in the Magellanic System
We present the first detection of HCO absorption in the Magellanic
System. Using the Australia Telescope Compact Array (ATCA), we observed 9
extragalactic radio continuum sources behind the Magellanic System and detected
HCO absorption towards one source located behind the leading edge of the
Magellanic Bridge. The detection is located at LSR velocity of , with a full width at half maximum of and optical depth of .
Although there is abundant neutral hydrogen (HI) surrounding the sightline in
position-velocity space, at the exact location of the absorber the HI column
density is low, , and there is little evidence for dust
or CO emission from Planck observations. While the origin and survival of
molecules in such a diffuse environment remains unclear, dynamical events such
as HI flows and cloud collisions in this interacting system likely play an
important role.Comment: Accepted for publication in ApJ. 6 pages, 2 figures, 2 table
Diversity in the structures and ligand binding sites of nematode fatty acid and retinol binding proteins revealed by Na-FAR-1 from Necator americanus
Fatty acid and retinol binding proteins (FARs) comprise a family of unusual α-helix rich lipid binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein (Ce-FAR-7) is from a subfamily of FARs that does not appear to be important at the host-parasite interface. We have therefore examined Na-FAR-1 from the blood-feeding intestinal parasite of humans, Necator americanus . The three dimensional structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, respectively, reveals an a-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand binding cavity and an additional C-terminal a-helix. Titration of apo -Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein:ligand complexes can be formed. Na-FAR-1, and possibly other FARs, may have a wider repertoire for hydrophobic ligand binding, as confirmed here by our finding that a range of neutral and polar lipids co-purify with the bacterial recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male
Killing tensors in pp-wave spacetimes
The formal solution of the second order Killing tensor equations for the
general pp-wave spacetime is given. The Killing tensor equations are integrated
fully for some specific pp-wave spacetimes. In particular, the complete
solution is given for the conformally flat plane wave spacetimes and we find
that irreducible Killing tensors arise for specific classes. The maximum number
of independent irreducible Killing tensors admitted by a conformally flat plane
wave spacetime is shown to be six. It is shown that every pp-wave spacetime
that admits an homothety will admit a Killing tensor of Koutras type and, with
the exception of the singular scale-invariant plane wave spacetimes, this
Killing tensor is irreducible.Comment: 18 page
Families of Quintic Calabi-Yau 3-Folds with Discrete Symmetries
At special loci in their moduli spaces, Calabi-Yau manifolds are endowed with
discrete symmetries. Over the years, such spaces have been intensely studied
and have found a variety of important applications. As string compactifications
they are phenomenologically favored, and considerably simplify many important
calculations. Mathematically, they provided the framework for the first
construction of mirror manifolds, and the resulting rational curve counts.
Thus, it is of significant interest to investigate such manifolds further. In
this paper, we consider several unexplored loci within familiar families of
Calabi-Yau hypersurfaces that have large but unexpected discrete symmetry
groups. By deriving, correcting, and generalizing a technique similar to that
of Candelas, de la Ossa and Rodriguez-Villegas, we find a calculationally
tractable means of finding the Picard-Fuchs equations satisfied by the periods
of all 3-forms in these families. To provide a modest point of comparison, we
then briefly investigate the relation between the size of the symmetry group
along these loci and the number of nonzero Yukawa couplings. We include an
introductory exposition of the mathematics involved, intended to be accessible
to physicists, in order to make the discussion self-contained.Comment: 54 pages, 3 figure
Dark-field transmission electron microscopy and the Debye-Waller factor of graphene
Graphene's structure bears on both the material's electronic properties and
fundamental questions about long range order in two-dimensional crystals. We
present an analytic calculation of selected area electron diffraction from
multi-layer graphene and compare it with data from samples prepared by chemical
vapor deposition and mechanical exfoliation. A single layer scatters only 0.5%
of the incident electrons, so this kinematical calculation can be considered
reliable for five or fewer layers. Dark-field transmission electron micrographs
of multi-layer graphene illustrate how knowledge of the diffraction peak
intensities can be applied for rapid mapping of thickness, stacking, and grain
boundaries. The diffraction peak intensities also depend on the mean-square
displacement of atoms from their ideal lattice locations, which is
parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a
suspended monolayer of exfoliated graphene and find a result consistent with an
estimate based on the Debye model. For laboratory-scale graphene samples,
finite size effects are sufficient to stabilize the graphene lattice against
melting, indicating that ripples in the third dimension are not necessary.Comment: 10 pages, 4 figure
Obtaining a class of Type O pure radiation metrics with a cosmological constant, using invariant operators
Using the generalised invariant formalism we derive a class of conformally
flat spacetimes whose Ricci tensor has a pure radiation and a Ricci scalar
component. The method used is a development of the methods used earlier for
pure radiation spacetimes of Petrov types O and N respectively. In this paper
we demonstrate how to handle, in the generalised invariant formalism,
spacetimes with isotropy freedom and rich Killing vector structure. Once the
spacetimes have been constructed, it is straightforward to deduce their
Karlhede classification: the Karlhede algorithm terminates at the fourth
derivative order, and the spacetimes all have one degree of null isotropy and
three, four or five Killing vectors.Comment: 29 page
- …