122 research outputs found
Consistent Technique Limits Suspension Laryngoscopy Complications
ntroductionâSuspension laryngoscopy (SL) is a commonly performed procedure among otolaryngologists. Several studies have shown that adverse effects occur regularly with SL.
ObjectiveâTo evaluate the postoperative complications of SL, and to determine if protecting the dentition and the oral mucosa and limiting suspension times decrease the overall incidence of oral cavity and pharyngeal complications of SL.
MethodsâAll of the cases of SL performed by 1 surgeon from November 2008 through September 2014 were retrospectively reviewed. A consistent technique for dental and mucosal protection was utilized, and suspension times were strictly limited to 30 consecutive minutes. The incidence of postoperative complications was calculated and analyzed with respect to gender, smoking status, dentition, laryngoscope type, and suspension system.
ResultsâA total of 213 consecutive SL cases were reviewed, including 174 patients (94 male, 80 female). The overall postoperative complication rate was of 3.8%. Four patients experienced tongue-related complications, two experienced oral mucosal alterations, one had a dental injury, and one experienced a minor facial burn. The complication incidence was greater with the Zeitels system (12.5%) compared with the Lewy suspension system (3.3%), although it was not significant (pâ=â0.4). Likewise, the association of complications with other patient factors was not statistically significant.
ConclusionâOnly 8 out of 213 cases in the present series experienced complications, which is significantly less than the complication rates observed in other reports. Consistent and conscientious protection of the dentition and of the oral mucosa and limiting suspension times to 30 minutes are factors unique to our series that appear to reduce complications in endolaryngeal surgery
Mechanical Testing of 3D Printed Prosthetics
The Rapid Orthotics for CURE Kenya team as a whole aims to empower the orthopedic technicians in the CURE Kenya hospital by creating, optimizing, and testing 3D printed prosthetics and orthotics. Our team started in 2016 by creating a 3D printing process for below the knee prosthetic sockets. Since then, we had adapted to the hospital\u27s needs over the years, expanding the capabilities of the system itself. Presently, a section of our team has worked specifically with these leg sockets to ensure the safety and functionality for patients. They have done testing to make sure the sockets are strong enough and to make sure the silicone liners are safe for use in developing countries. In addition to safety testing, over the years we have created ankle-foot orthotics and prosthetic hands. The design part of our team works to create new 3D printed devices to help our clients reach more patients. By 2024 we hope to fully integrate our expanded system in the orthopedic workshop in Kijabe, Kenya.https://mosaic.messiah.edu/engr2020/1018/thumbnail.jp
Policy Shaping: Integrating Human Feedback with Reinforcement Learning
Copyright© (2013) by Neural Information Processing SystemsPresented at the 27th Annual Conference on Neural Information Processing Systems (NIPS 2013), 5-10 December 2013, Lake Tahoe, Nevada.A long term goal of Interactive Reinforcement Learning is to
incorporate non-
expert human feedback to solve complex tasks. Some state-of
-the-art methods
have approached this problem by mapping human information to rewards and values and iterating over them to compute better control policies. In this paper we
argue for an alternate, more effective characterization of
human feedback: Policy
Shaping. We introduce
Advise, a Bayesian approach that attempts to maximize the information gained from human feedback by utilizing it as direct policy labels. We compare Advise
to state-of-the-art approaches and show that it can outperform
them and is robust to infrequent and inconsistent human feedback
Black Box 2019
The Black Box is a student based creative publication serving the Embry-Riddle Prescott campus. It is our goal to provide a showcase for the creativity and talent of the Embry-Riddle students. Creative works by members of Embry-Riddle\u27s faculty and staff are included
Submillimeter Follow-up of WISE-Selected Hyperluminous Galaxies
We have used the Caltech Submillimeter Observatory (CSO) to follow-up a
sample of WISE-selected, hyperluminous galaxies, so called W1W2-dropout
galaxies. This is a rare (~ 1000 all-sky) population of galaxies at high
redshift (peaks at z=2-3), that are faint or undetected by WISE at 3.4 and 4.6
um, yet are clearly detected at 12 and 22 um. The optical spectra of most of
these galaxies show significant AGN activity. We observed 14 high-redshift (z >
1.7) W1W2-dropout galaxies with SHARC-II at 350 to 850 um, with 9 detections;
and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer
follow-up of 25 targets at 3.6 and 4.5 um, as well as optical spectra of 12
targets are also presented in the paper. Combining WISE data with observations
from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral
energy distributions (SEDs). These SEDs have a consistent shape, showing
significantly higher mid-IR to submm ratios than other galaxy templates,
suggesting a hotter dust temperature. We estimate their dust temperatures to be
60-120 K using a single-temperature model. Their infrared luminosities are well
over 10^{13} Lsun. These SEDs are not well fitted with existing galaxy
templates, suggesting they are a new population with very high luminosity and
hot dust. They are likely among the most luminous galaxies in the Universe. We
argue that they are extreme cases of luminous, hot dust-obscured galaxies
(DOGs), possibly representing a short evolutionary phase during galaxy merging
and evolution. A better understanding of their long-wavelength properties needs
ALMA as well as Herschel data.Comment: Will be Published on Sep 1, 2012 by Ap
Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination
Natural infections expose the immune system to escalating antigen and inflammation over days to weeks, whereas nonlive vaccines are single bolus events. We explored whether the immune system responds optimally to antigen kinetics most similar to replicating infections, rather than a bolus dose. Using HIV antigens, we found that administering a given total dose of antigen and adjuvant over 1â2 wk through repeated injections or osmotic pumps enhanced humoral responses, with exponentially increasing (exp-inc) dosing profiles eliciting >10-fold increases in antibody production relative to bolus vaccination post prime. Computational modeling of the germinal center response suggested that antigen availability as higher-affinity antibodies evolve enhances antigen capture in lymph nodes. Consistent with these predictions, we found that exp-inc dosing led to prolonged antigen retention in lymph nodes and increased Tfh cell and germinal center B-cell numbers. Thus, regulating the antigen and adjuvant kinetics may enable increased vaccine potency.National Institute of Allergy and Infectious Diseases (U.S.) (Awards UM1AI100663)National Institute of Allergy and Infectious Diseases (U.S.) (Awards AI110657
Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies
We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data
Cooperating to commercialize technology: A dynamic model of fairness perceptions, experience, and cooperation
Technology entrepreneurship is an important driver of economic growth, although entrepreneurs must maintain cooperative ties with the owners of any technology they hope to bring to market. Existing studies show that fairness perceptions have a great influence on this cooperation, but no research investigates its precise mechanisms or dynamic patterns. This study explores the development of 17 ventures that cooperated with a university-owner of technology and thereby identifies different cooperation patterns in which fairness perceptions influence the degree of cooperation. These perceptions also change over time, partly as a function of accumulated experience and learning. A system dynamics model integrates insights from existing literature with the empirical findings to reveal which cooperation mechanisms relate to venture development over time; the combinations of individual experience, fairness perceptions, and market circumstances lead to four different patterns. This model can explain changes in entrepreneurial cooperation as a result of changes in fairness perceptions, which depend on learning effects and entrepreneurial experience. Each identified cooperation pattern has implications for research and offers insights for practitioners who need to manage relationships in practice
Biomechanical considerations in the pathogenesis of osteoarthritis of the knee
Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- âŠ