12,330 research outputs found
Magnetic excitations in the spin-trimer compounds Ca3Cu3-xNix(PO4)4 (x=0,1,2)
Inelastic neutron scattering experiments were performed for the spin-trimer
compounds Ca3Cu3-xNix(PO4)4 (x=0,1,2) in order to study the dynamic magnetic
properties. The observed excitations can be associated with transitions between
the low-lying electronic states of linear Cu-Cu-Cu, Cu-Cu-Ni, and Ni-Cu-Ni
trimers which are the basic constituents of the title compounds. The exchange
interactions within the trimers are well described by the Heisenberg model with
dominant antiferromagnetic nearest-neighbor interactions J. For x=0 we find
JCu-Cu=-4.74(2) meV which is enhanced for x=1 to JCu-Cu=-4.92(6) meV. For x=1
and x=2 we find JCu-Ni=-0.85(10) meV and an axial single-ion anisotropy
parameter DNi=-0.7(1) meV. While the x=0 and x=1 compounds do not exhibit
long-range magnetic ordering down to 1 K, the x=2 compound shows
antiferromagnetic ordering below TN=20 K, which is compatible with the
molecular-field parameter 0.63(12) meV derived by neutron spectroscopy.Comment: 22 pages (double spacing), 1 table, 9 figures, Submitted to Phys.
Rev. B (2007
Intersection Information based on Common Randomness
The introduction of the partial information decomposition generated a flurry
of proposals for defining an intersection information that quantifies how much
of "the same information" two or more random variables specify about a target
random variable. As of yet, none is wholly satisfactory. A palatable measure of
intersection information would provide a principled way to quantify slippery
concepts, such as synergy. Here, we introduce an intersection information
measure based on the G\'acs-K\"orner common random variable that is the first
to satisfy the coveted target monotonicity property. Our measure is imperfect,
too, and we suggest directions for improvement.Comment: 19 pages, 5 figure
Environmental factors influence both abundance and genetic diversity in a widespread bird species.
Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations
From meadows to milk to mucosa – adaptation of Streptococcus and Lactococcus species to their nutritional environments
Lactic acid bacteria (LAB) are indigenous to food-related habitats as well as associated with the mucosal surfaces of animals. The LAB family Streptococcaceae consists of the genera Lactococcus and Streptococcus. Members of the family include the industrially important species Lactococcus lactis, which has a long history safe use in the fermentative food industry, and the disease-causing streptococci Streptococcus pneumoniae and Streptococcus pyogenes. The central metabolic pathways of the Streptococcaceae family have been extensively studied because of their relevance in the industrial use of some species, as well as their influence on virulence of others. Recent developments in high-throughput proteomic and DNA-microarray techniques, in in vivo NMR studies, and importantly in whole-genome sequencing have resulted in new insights into the metabolism of the Streptococcaceae family. The development of cost-effective high-throughput sequencing has resulted in the publication of numerous whole-genome sequences of lactococcal and streptococcal species. Comparative genomic analysis of these closely related but environmentally diverse species provides insight into the evolution of this family of LAB and shows that the relatively small genomes of members of the Streptococcaceae family have been largely shaped by the nutritionally rich environments they inhabit.
Slip energy barriers in aluminum and implications for ductile versus brittle behavior
We conisder the brittle versus ductile behavior of aluminum in the framework
of the Peierls-model analysis of dislocation emission from a crack tip. To this
end, we perform first-principles quantum mechanical calculations for the
unstable stacking energy of aluminum along the Shockley partial
slip route. Our calculations are based on density functional theory and the
local density approximation and include full atomic and volume relaxation. We
find that in aluminum J/m. Within the Peierls-model
analysis, this value would predict a brittle solid which poses an interesting
problem since aluminum is typically considered ductile. The resolution may be
given by one of three possibilites: (a) Aluminum is indeed brittle at zero
temperature, and becomes ductile at a finite temperature due to motion of
pre-existing dislocations which relax the stress concentration at the crack
tip. (b) Dislocation emission at the crack tip is itself a thermally activated
process. (c) Aluminum is actually ductile at all temperatures and the
theoretical model employed needs to be significantly improved in order to
resolve the apparent contradiction.Comment: 4 figures (not included; send requests to [email protected]
WISE J163940.83-684738.6: A Y Dwarf identified by Methane Imaging
We have used methane imaging techniques to identify the near-infrared
counterpart of the bright WISE source WISEJ163940.83-684738.6. The large proper
motion of this source (around 3.0arcsec/yr) has moved it, since its original
WISE identification, very close to a much brighter background star -- it
currently lies within 1.5" of the J=14.90+-0.04 star 2MASS16394085-6847446.
Observations in good seeing conditions using methane sensitive filters in the
near-infrared J-band with the FourStar instrument on the Magellan 6.5m Baade
telescope, however, have enabled us to detect a near-infrared counterpart. We
have defined a photometric system for use with the FourStar J2 and J3 filters,
and this photometry indicates strong methane absorption, which unequivocally
identifies it as the source of the WISE flux. Using these imaging observations
we were then able to steer this object down the slit of the FIRE spectrograph
on a night of 0.6" seeing, and so obtain near-infrared spectroscopy confirming
a Y0-Y0.5 spectral type. This is in line with the object's
near-infrared-to-WISE J3--W2 colour. Preliminary astrometry using both WISE and
FourStar data indicates a distance of 5.0+-0.5pc and a substantial tangential
velocity of 73+-8km/s. WISEJ163940.83-684738.6 is the brightest confirmed Y
dwarf in the WISE W2 passband and its distance measurement places it amongst
the lowest luminosity sources detected to date.Comment: Accepted for publication in The Astrophysical Journal, 20 September
201
Absence of halfmetallicity in defect-free Cr, Mn-delta-doped Digital Magnetic Heterostructures
We present results of a combined density functional and many-body
calculations for the electronic and magnetic properties of the defect-free
digital ferromagnetic heterostructures obtained by doping GaAs with Cr and Mn.
While local density approximation/(+U) predicts half-metallicity in these
defect-free delta-doped heterostructures, we demonstrate that local many-body
correlations captured by Dynamical Mean Field Theory induce within the minority
spin channel non-quasiparticle states just above . As a consequence of the
existence of these many-body states the half-metallic gap is closed and the
carriers spin polarization is significantly reduced. Below the Fermi level the
minority spin highest valence states are found to localize more on the GaAs
layers being independent of the type of electronic correlations considered.
Thus, our results confirm the confinement of carriers in these delta-doped
heterostructures, having a spin-polarization that follow a different
temperature dependence than magnetization. We suggest that polarized
hot-electron photoluminescence experiments might bring evidence for the
existence of many-body states within the minority spin channel and their finite
temperature behavior.Comment: 10 pages 8 figures, submitted to PR
The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements
This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by s=0.5 ppm over the continents and s=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transpor
One-dimensional orbital fluctuations and the exotic magnetic properties of YVO
Starting from the Mott insulator picture for cubic vanadates, we derive and
investigate the model of superexchange interactions between V ions, with
nearly degenerate orbitals occupied by two electrons each. The
superexchange interactions are strongly frustrated and demonstrate a strong
interrelation between possible types of magnetic and orbital order. We
elucidate the prominent role played by fluctuations of and orbitals
which generate ferromagnetic superexchange interactions even in the absence of
Hund's exchange. In this limit we find orbital valence bond state which is
replaced either by -type antiferromagnetic order with weak -type orbital
order at increasing Hund's exchange, or instead by -type antiferromagnetic
order when the lattice distortions stabilize -type orbital order. Both
phases are observed in YVO and we argue that a dimerized -type
antiferromagnetic phase with stronger and weaker FM bonds alternating along the
c axis may be stabilized by large spin-orbital entropy at finite temperature.
This suggests a scenario which explains the origin of the exotic -AF order
observed in YVO in the regime of intermediate temperatures and allows one
to specify the necessary ingredients of a more complete future theory.Comment: 23 pages, 15 figure
Renormalizable parameters of the sine-Gordon model
The well-known phase structure of the two-dimensional sine-Gordon model is
reconstructed by means of its renormalization group flow, the study of the
sensitivity of the dynamics on microscopic parameters. Such an analysis
resolves the apparent contradiction between the phase structure and the
triviality of the effective potential in either phases, provides a case where
usual classification of operators based on the linearization of the scaling
relation around a fixed point is not available and shows that the Maxwell-cut
generates an unusually strong universality at long distances. Possible
analogies with four-dimensional Yang-Mills theories are mentioned, too.Comment: 12 pages, 7 figures. Revised form, to appear in Phys. Lett.
- …